#Triton

GenerativeAIExamples - 生成式AI示例,快速部署和测试
NVIDIARAGLangChainTritonNeMoGithub开源项目
NVIDIA提供的生成式AI示例,使用CUDA-X软件栈和NVIDIA GPU,展示快速部署、测试和扩展AI模型的方法。包括最新的RAG管道构建技巧、实验性示例和企业应用,支持本地和远程推理,集成流行LLM编程框架,并附有详细开发文档。
attorch - 易于修改的Python神经网络模块
attorchPyTorchTriton深度学习神经网络模块Github开源项目
attorch是一个基于OpenAI Triton的PyTorch模块子集,提供易于修改的高效神经网络模块。支持自动混合精度、计算机视觉和自然语言处理相关层。
accelerated-scan - GPU加速的并行扫描算法高效解决一阶递归
Accelerated ScanGPU并行计算CUDATritonGithub开源项目
accelerated-scan是一个Python包,实现了GPU上高效的一阶并行关联扫描。该项目采用分块处理算法和GPU通信原语,能快速处理状态空间模型和线性RNN中的一阶递归问题。支持前向和后向扫描,提供C++ CUDA内核和Triton实现,在不同序列长度下均有出色性能表现。适用于深度学习和信号处理等需要高性能递归计算的领域。
triton - 开源高效深度学习原语编程语言与编译器
Triton深度学习GPU编程编译器LLVMGithub开源项目
Triton是一种开源编程语言和编译器,专为编写高效的自定义深度学习原语而设计。它提供了一个兼具高生产力和灵活性的开发环境,性能优于CUDA,灵活性超过其他领域特定语言。Triton支持NVIDIA和AMD GPU平台,提供完善的文档和教程。用户可通过pip轻松安装,也支持源代码构建。该项目持续更新,最新版本进行了大量性能优化和问题修复。
jax-triton - JAX与Triton集成实现GPU计算加速
JAXTritonjax-tritonCUDAGPU加速Github开源项目
jax-triton项目实现了JAX和Triton的集成,让开发者能在JAX中使用Triton的GPU计算功能。通过triton_call函数,可在JAX编译函数中应用Triton内核,提高计算密集型任务效率。项目提供文档和示例,适合机器学习和科学计算领域的GPU计算优化需求。
tensorrtllm_backend - TensorRT-LLM后端 适用于Triton的大语言模型推理引擎
TensorRT-LLMTriton推理服务GPU深度学习Github开源项目
TensorRT-LLM Backend是Triton Inference Server的专用后端,用于部署和服务TensorRT-LLM模型。它集成了in-flight batching和paged attention等先进特性,显著提升了大语言模型的推理效率。通过简洁的接口设计,此后端使TensorRT-LLM模型能无缝集成到Triton服务中,为用户提供高性能、可扩展的AI推理解决方案。