Project Icon

pytorch-widedeep

基于PyTorch的多模式深度学习工具包,结合表格、文本和图像数据

pytorch-widedeep是一个基于Google的Wide and Deep算法的开源项目,专为多模式数据集设计,支持结合表格、文本和图像数据。该工具包提供多种架构和自定义模型支持,如TabMlp、BasicRNN、TabTransformer等。详细的安装、快速入门和使用扩展步骤可在官方文档中找到。pytorch-widedeep适合多模式数据的深度学习研究和应用。

pytorch-lightning - 深度学习框架的全方位AI模型训练与部署解决方案
AI模型训练GithubLightning FabricPyTorch Lightning开源项目模型部署深度学习热门
深度学习框架Pytorch-Lightning 2.0版本现已推出,提供清晰稳定的API,支持AI模型的预训练、微调和部署。该框架轻松实现Pytorch代码组织,将科学研究与工程实现分离,帮助研究人员和工程师高效进行模型训练与部署。通过提供各种训练和部署选项以及兼容多种硬件和加速器,Pytorch-Lightning兼顾模型的灵活性和可扩展性,适应从初学者到专业AI研究的不同需求。
pytorch-blender - 将Blender与PyTorch融合的深度学习框架
BlenderGithubPyTorchblendtorch人工视觉数据开源项目深度学习
blendtorch是一个Python框架,将Blender与PyTorch无缝集成,用于人工视觉数据的深度学习。它使用Eevee实时渲染器生成图像和注释,提高了模型训练效率。该框架支持分布式Blender渲染直接输入PyTorch数据管道,适用于监督学习和域随机化。blendtorch还提供OpenAI Gym支持,可用于强化学习训练。这一工具为人工训练数据生成和深度学习研究提供了灵活高效的解决方案。
vit-pytorch - 通过PyTorch实现多种视觉Transformer变体
GithubPytorchVision Transformer卷积神经网络图像分类开源项目深度学习
本项目展示了如何在PyTorch中实现和使用视觉Transformer(ViT)模型,包括Simple ViT、NaViT、Distillation、Deep ViT等多种变体。利用基于Transformer架构的简单编码器,本项目在视觉分类任务中达到了先进水平。用户可以通过pip进行安装,并参考提供的代码示例进行模型加载和预测。项目还支持高级功能如知识蒸馏、变分图像尺寸训练和深度模型优化,适用于多种视觉任务场景。
bert4torch - 基于PyTorch开发的自然语言处理工具
Githubbert4torch功能开源项目快速上手模型预训练权重
bert4torch是一个基于PyTorch开发的自然语言处理工具。支持包括BERT、RoBERTa、GPT在内的多种预训练模型,适用于广泛NLP任务。提供丰富示例及详尽文档,助力快速实施项目。特包高级功能如大模型推理,极致满足专业需求,是NLP领域的首选工具库。
Awesome-PyTorch-Chinese - PyTorch资源,教程、视频、实战项目和书籍推荐
GithubPyTorch书籍实战开源项目教程视频
详细介绍PyTorch资源,包括官方文档、教程、视频课程、NLP与CV实战项目及相关书籍,帮助各层次用户深入掌握PyTorch。
MEGABYTE-pytorch - 多尺度Transformer模型实现百万字节序列预测
AI模型GithubMEGABYTEPytorchTransformer开源项目深度学习
MEGABYTE-pytorch是一个基于PyTorch实现的多尺度Transformer模型,专门用于预测百万字节长度的序列。该项目具有灵活的配置选项,支持多个本地模型,并整合了Flash Attention等先进技术。MEGABYTE-pytorch通过简洁的API接口实现长序列处理、模型训练和文本生成。此外,项目提供了基于enwik8数据集的训练示例,为开发者提供了实用参考。
perceiver-pytorch - Perceiver模型的PyTorch实现 迭代注意力处理多模态数据
GithubPerceiver开源项目注意力机制深度学习神经网络计算机视觉
perceiver-pytorch项目实现了Perceiver和PerceiverIO模型。这些模型采用迭代注意力机制,能够处理图像、视频和文本等多种输入数据。项目提供灵活的配置选项,包括输入通道数、频率编码和注意力头数等。通过语言模型示例,展示了PerceiverIO架构的通用性。该实现适合处理复杂多模态输入的深度学习研究和应用。项目提供了简单易用的API,支持快速集成到现有PyTorch项目中。代码实现了原论文中的核心概念,如交叉注意力和自注意力机制。此外,项目还包含了实验性的自下而上注意力版本,为研究人员提供了更多探索空间。
deep-person-reid - 深度学习人员重识别库,支持多GPU训练和跨数据集评估
GithubPyTorchTorchreid多GPU训练开源项目深度学习重识别
Torchreid是一个基于PyTorch的深度学习人员重识别库,支持多GPU训练、图像和视频重识别、端到端训练与评估、多数据集训练和跨数据集评估。它易于准备数据集,支持添加模型、数据集和训练方法,提供预训练模型和高级训练技术,并配备可视化工具。
torchdistill - 模块化深度学习知识蒸馏框架
GithubPyYAMLtorchdistill开源项目模型训练深度学习知识蒸馏
torchdistill是一款模块化的深度学习知识蒸馏框架,通过编辑yaml文件即可设计实验,无需编写Python代码。支持提取模型中间表示,方便进行可重复的深度学习研究。通过ForwardHookManager,无需修改模型接口即可提取数据。支持从PyTorch Hub导入模块,并包含多种范例代码及预训练模型,适用于图像分类、目标检测、语义分割和文本分类等任务。
monodepth2 - 基于自监督学习的单目深度估计实现
GithubMonodepth2PyTorch开源项目深度估计自监督学习计算机视觉
本项目提供了PyTorch实现的代码,用于训练和测试深度估计模型。代码采用自监督学习方法,支持单目和立体图像的深度预测。提供多种预训练模型和自定义数据集,兼容不同的图像分辨率。适用于研究和非商业用途,包含详细的设置指南、训练和评估说明。用户可通过此项目高效开发和优化深度估计模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号