Project Icon

keras-io

Keras.io文档生成工具与开发者指南

Keras.io文档生成工具是一个开源项目,用于生成深度学习框架Keras的官方文档网站。项目支持tutobook格式,可同时生成notebook、Python文件和网页。开发者能够通过Docker或pip安装依赖,使用autogen.py脚本本地生成和预览网站。项目详细介绍了如何贡献新示例、修复现有代码,并欢迎社区参与贡献。

keras-ocr - 基于Keras的开源文本检测和OCR解决方案
Githubkeras-ocr图像处理开源项目文字识别深度学习计算机视觉
keras-ocr是一个开源的文本检测和OCR工具包,集成了CRAFT检测模型和CRNN识别模型。该项目提供高级API用于训练和部署OCR流程,支持Python 3.6+和TensorFlow 2.0.0+环境。keras-ocr自带预训练模型,在COCO-Text验证集上表现接近主流云服务。它为开发者提供了一个灵活、高效且易于使用的OCR开发平台。
keras-nlp - 兼容多框架的自然语言处理工具和预训练模型
GithubJAXKerasNLPPyTorchTensorFlow开源项目自然语言处理
KerasNLP 是一个兼容 TensorFlow、JAX 和 PyTorch 的自然语言处理库,提供预训练模型和低级模块。基于 Keras 3,支持 GPU 和 TPU 的微调,并可跨框架训练和序列化。设置 KERAS_BACKEND 环境变量即可切换框架,安装方便,立即体验强大 NLP 功能。
keras_cv_attention_models - 深度学习模型和使用指南
GithubKeras_cv_attention_modelsPyTorchTensorFlow开源项目模型训练
该项目提供全面的深度学习模型和使用指南,支持Keras和PyTorch后端。涵盖基础操作、模型训练、推理优化等功能,并详细介绍识别、检测、分割和语言模型的使用。还支持ONNX导出和推理性能评估。
autokeras - 机器学习自动化工具,简化图像分类任务
AutoKerasAutoMLGithubPython开源项目机器学习深度学习
AutoKeras是由德州农工大学DATA实验室开发的开源项目,旨在简化机器学习流程。通过Keras的AutoML系统,用户能够轻松完成图像分类等任务。支持Python 3.7及以上版本和TensorFlow 2.8.0及以上版本,安装方便,只需使用pip命令。提供详细的官方教程和相关书籍资源,社区鼓励贡献和参与。
u-net - 使用Keras库构建深度神经网络的教程
GithubKerasTensorFlowU-NetUltrasound Nerve Segmentation开源项目深度学习
本教程使用Keras库构建深度神经网络,用于超声图像神经分割,特别适用于Kaggle竞赛。从数据预处理、模型定义、训练到提交文件生成,教程提供了详尽的步骤说明。实验表明该方法在测试图像中取得约0.57的得分,为后续优化提供了出发点。
textgenrnn - 高效训练文本生成神经网络的实用模块
GithubKerasPythonTensorFlowchar-rnntextgenrnn开源项目
textgenrnn是一个基于Keras和TensorFlow的Python 3模块,只需几行代码即可训练不同规模和复杂度的文本生成神经网络。支持字符级和词级训练,并可使用预训练模型加快训练。其现代架构利用注意力加权和跳过嵌入等技术,提升模型质量和训练速度。可在GPU上训练并在CPU上生成文本,还可在Colab中免费试用。
jupyter-book - 将计算材料转化为高质量数字出版物的开源工具
GithubJupyter Book交互式书籍开源工具开源项目文档生成计算内容
Jupyter Book是一款开源工具,专门用于将计算材料转化为高质量的数字出版物。支持markdown和Jupyter笔记本格式,整合代码、引用和公式等元素。通过简单命令即可运行代码、缓存结果,并生成交互式网页书籍和PDF文档。由Executable Book Project维护,目前处于活跃开发阶段。
readthedocs.org - 开源项目文档托管和自动化构建服务
GithubRead the Docs代码即文档开源社区开源项目持续文档文档托管
Read the Docs是一个面向开源社区的文档托管平台。它集成了Sphinx、MkDocs等多种文档工具,支持从Git仓库拉取代码并自动构建文档。平台践行持续文档化理念,为开发者提供便捷的文档管理和发布方案。用户可将GitHub项目与Read the Docs无缝集成,实现文档自动更新。平台还提供详细的使用指南和贡献说明,便于快速上手和参与项目开发。
pytorch-doc-zh - PyTorch深度学习库中文文档与教程,支持GPU和CPU优化
GPUGithubPyTorchtensor库中文文档开源项目深度学习
提供最新的PyTorch中文文档与教程,涵盖深度学习和张量优化,支持GPU和CPU。包括2.0版本中文翻译、最新英文教程和文档,以及丰富的学习资源和社区支持,适合希望深入了解和使用PyTorch的中文用户。
keras-cv - 跨框架模块化计算机视觉工具集
GithubKerasKerasCV开源项目模型训练深度学习计算机视觉
keras-cv 是基于 Keras 3 的模块化计算机视觉库,兼容 TensorFlow、JAX 和 PyTorch。它为数据增强、分类、目标检测等视觉任务提供高级组件,支持跨框架迁移,并包含预训练模型。该库旨在帮助开发者高效构建生产级计算机视觉应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号