Project Icon

edge-connect

通过生成对抗网络模型提高细节再现的图像修复方法

EdgeConnect是一种新的图像修复方法,通过生成对抗网络模型提高细节再现。该方法包含两个步骤:首先生成图像中缺失区域的边缘,然后根据生成的边缘信息填补图像。此方法适用于Places2、CelebA及Paris Street-View等数据集。EdgeConnect引入新的边缘生成和图像补全技术,使修复结果更为真实自然。该项目基于Python和PyTorch实现,支持CUDA加速,提供完整的训练、测试和评估指南,并且免费提供预训练模型下载使用。

sdxl-instructpix2pix-768 - 基于SDXL的指令式图像编辑模型
GithubHuggingfaceSDXL人工智能图像生成图像编辑开源项目模型深度学习
该项目将InstructPix2Pix方法应用于Stable Diffusion XL (SDXL)模型,开发了一个能够根据文本指令精确编辑图像的AI系统。它可以执行多种图像编辑任务,如改变天空景象、转换绘画风格和调整人物年龄等。项目通过diffusers库提供简便的使用接口。作为一个实验性模型,该项目仍有优化空间,开发者欢迎用户反馈和讨论。
SRGAN-PyTorch - 基于GAN的单图像超分辨率实现
GithubPyTorchSRGAN图像处理开源项目生成对抗网络超分辨率
SRGAN-PyTorch是一个开源项目,实现了基于生成对抗网络的单图像超分辨率算法。该项目能够将图像放大4倍,同时保持高质量和细节。它提供了完整的训练和测试流程,包括预训练模型、数据集处理脚本和性能评估。研究者和开发者可以利用此项目复现原论文结果或在自定义数据上应用SRGAN技术。
EigenGAN-Tensorflow - 层级特征分解的生成对抗网络框架
EigenGANGithub人脸生成图像属性编辑开源项目无监督学习生成对抗网络
EigenGAN-Tensorflow是一个基于TensorFlow实现的生成对抗网络框架,采用层级特征分解方法。该项目提供CelebA和Anime数据集的训练测试代码,可生成和操控高质量人脸与动漫图像。通过特征分解实现图像属性的无监督学习和精确控制,支持多GPU训练,并提供预训练模型。此开源项目为GAN研究和开发提供了实用工具。
DCLGAN - 无监督图像转换的双重对比学习方法 实现更真实几何变换
DCLGANGithub图像转换对比学习开源项目无监督学习生成对抗网络
DCLGAN是一种新型无监督图像到图像转换模型,采用双重对比学习方法。相比CycleGAN,它能实现更真实的几何变换;相比CUT,具有更高的稳定性和性能。DCLGAN适用于多种图像转换任务,如猫狗互换和马斑马互换。项目提供了预训练模型和使用指南,便于研究者进行实验和评估。
GET3D - 从2D图像生成高质量3D纹理模型的新突破
3D生成模型GET3DGithub图像学习开源项目生成对抗网络纹理网格
GET3D是一种新型生成模型,可从2D图像集合中学习生成高质量3D纹理网格模型。该模型融合了可微表面建模、可微渲染和生成对抗网络技术,能直接生成具有复杂拓扑结构和丰富几何细节的3D模型。GET3D可生成包括汽车、椅子、动物、摩托车、人物和建筑在内的多种3D模型,在质量上显著超越现有方法,为大规模创建3D虚拟世界内容提供了有力工具。
joliGEN - 集成GAN、扩散和一致性模型的AI图像生成框架
GANGithubJoliGEN图像处理开源项目扩散模型生成式AI
joliGEN是一个集成框架,用于训练自定义的AI图像转换模型。该框架集成了GAN、扩散和一致性模型,可用于配对和无配对的图像转换任务。joliGEN适用于图像生成控制、增强现实和数据集增强等实际场景。它支持快速稳定的训练过程,并提供REST API服务简化部署。凭借丰富的选项和参数,joliGEN可应用于多种图像生成和处理任务。
gigagan-pytorch - 最新生成对抗网络GigaGAN的实现,优化训练收敛和模型稳定性
AdobeGigaGANGithubLAIONPyTorchStabilityAI开源项目
gigagan-pytorch项目实现了Adobe最新的生成对抗网络GigaGAN,优化了跳层激励和辅助重建损失,以提升训练收敛速度和模型稳定性。项目支持高分辨率上采样器,具备混合精度和多GPU训练功能。适合寻求高效稳定GAN训练的开发者和研究人员。可加入Discord社区,与LAION合作获取更多支持。
awesome-diffusion-categorized - 收集并分类了使用扩散模型实现的图像修复和增强技术
ColorizationDiffusion ModelFace RestorationGenerative DiffusionGithubImage Restoration开源项目
该项目收集并分类了使用扩散模型实现的图像修复和增强技术,包括图像复原、色彩化、面部修复、虚拟试穿和文本引导编辑等。所提供的研究项目和代码链接便于用户快速查找和应用这些前沿的图像处理技术。
SeeSR - 基于语义感知的实景图像超分辨率方法
GithubSeeSR图像超分辨率开源项目扩散模型真实世界图像语义感知
SeeSR是一种新型语义感知实景图像超分辨率技术,结合稳定扩散模型和语义信息提升低分辨率图像质量。该方法已被CVPR2024接收并在GitHub开源。SeeSR可处理多种场景图像,并支持快速推理。项目提供预训练模型、测试数据集和使用说明,便于研究和应用。此外,项目还包含DAPE和SeeSR模型的训练指南,以及用于生成训练数据的工具。SeeSR采用tiled vae方法节省GPU内存,并提供Gradio演示界面。该技术在多个真实世界图像数据集上展现出优异性能。
generative_adversarial_networks_101 - 探索生成对抗网络的核心概念和实践实现
GANGithub人工智能图像生成开源项目深度学习生成对抗网络
该项目全面介绍生成对抗网络(GANs)的基本概念和应用实践。内容涵盖多种GAN模型在MNIST和CIFAR-10数据集上的具体实现,包括DCGAN、CGAN等。通过详细的代码示例、训练过程和结果可视化,展示了GAN的工作原理。项目还提供丰富的参考资料和相关论文,为深入学习和实践GAN提供了有价值的资源。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号