Project Icon

onnx2c

为微控制器优化的神经网络部署工具

onnx2c是一款ONNX到C的编译工具,专门针对微控制器环境进行优化。它将ONNX文件转换为单一C文件,生成的代码不使用动态内存分配,仅需标准C数学库支持。该工具设计简单易用,无需学习曲线,方便开发者将训练好的神经网络快速集成到微控制器项目中。onnx2c提供多种优化功能,包括张量联合、Cast节点移除和实验性量化,有效提升代码性能和内存利用率。

TinyNeuralNetwork - 高效易用的深度学习模型压缩框架
GithubTinyNeuralNetwork开源项目模型压缩深度学习神经网络量化训练
TinyNeuralNetwork是一个开源的深度学习模型压缩框架,提供神经架构搜索、剪枝、量化和模型转换等功能。该框架支持计算图捕获、依赖解析、多种剪枝算法、量化感知训练和模型转换,为深度学习模型优化提供全面解决方案。TinyNeuralNetwork已应用于天猫精灵、海尔电视等超过1000万IoT设备,实现AI能力部署。
onnxmltools - 多框架机器学习模型转ONNX工具
GithubONNXONNXMLTools依赖开源项目机器学习工具包模型转换
ONNXMLTools可将包括Tensorflow、scikit-learn、Core ML、Spark ML、LightGBM、XGBoost、H2O等在内的多种机器学习模型转换为ONNX格式。它支持通过PyPi或源码安装,依赖ONNX、NumPy和ProtoBuf,适用于Python 3.7及以上版本,提供详尽的转换示例与测试方法。更多信息请参考相关文档与教程。
FaceONNX - 跨平台人脸识别与分析库
GithubONNX人脸分析人脸识别开源项目深度神经网络跨平台
FaceONNX是基于ONNX运行时的人脸识别和分析库。它提供预训练的深度神经网络模型,用于人脸检测、特征点提取、性别年龄分类、情绪美貌分析及人脸嵌入比较。支持跨平台应用,提供.NET Standard 2.0版本,可通过NuGet包管理器集成。FaceONNX为开发者提供了实用的人脸分析工具。
tiny-dnn - 轻量级C++14深度学习库,适用于嵌入式系统和物联网设备
C++14Githubtiny-dnn嵌入式系统开源项目深度学习物联网设备
tiny-dnn是一个为计算资源有限的嵌入式系统和物联网设备设计的C++14深度学习库。该库无需GPU,通过TBB线程和SSE/AVX向量化实现了高效性能,在13分钟内达到了98.8%的MNIST准确率。其便携的头文件形式使其易于集成,支持多种网络层类型、激活函数、损失函数和优化算法。tiny-dnn还能导入Caffe模型,适合学习和构建神经网络应用。
tiny-cuda-nn - 专注于快速训练和查询神经网络的开源框架
C++编程CUDAGPUGithubTiny CUDA Neural Networks开源项目深度学习
Tiny CUDA Neural Networks是一个紧凑、高效的开源框架,专注于快速训练和查询神经网络。它包含优化的多层感知器(MLP)和多分辨率哈希编码,并支持多种输入编码、损失函数和优化器。适用于NVIDIA GPU,通过C++/CUDA API和PyTorch扩展,助力高性能计算和深度学习项目。
sparseml - 神经网络优化工具,简化代码实现高效稀疏模型
GithubSparseML开源项目推理优化模型优化神经网络稀疏化
SparseML是开源模型压缩工具包,使用剪枝、量化和蒸馏算法优化推理稀疏模型。可导出到ONNX,并与DeepSparse结合,在CPU上实现GPU级性能。适用于稀疏迁移学习和从零开始的稀疏化,兼容主流NLP和CV模型,如BERT、YOLOv5和ResNet-50,实现推理速度和模型大小的显著优化。
oneDNN - 优化深度学习应用的跨平台性能库,支持多种处理器架构
CPU优化GithubUXL Foundationdeep learningoneAPI specificationoneDNN开源项目
oneAPI Deep Neural Network Library (oneDNN) 是一个开源的跨平台性能库,提供深度学习应用的核心模块。oneDNN 专为Intel架构处理器、Intel图形处理器和Arm 64位架构处理器进行优化,并实验性支持NVIDIA、AMD、OpenPOWER、IBMz 和 RISC-V 等架构的 GPU 和 CPU。深度学习应用及框架开发者可以利用oneDNN提升在多种硬件上的性能表现。
MoritzLaurer-roberta-base-zeroshot-v2.0-c-onnx - ONNX格式的零样本分类基础模型
GithubHugging FaceHuggingfaceONNX开源项目模型转换
该项目将MoritzLaurer/roberta-base-zeroshot-v2.0-c模型转成ONNX格式,旨在增强推理性能和部署灵活性,借助Hugging Face的Optimum库进行转换。适用于多任务快速处理的应用场景,在零样本分类中,无需大量手动标注数据,便可实现有效的文本分类,适合各类语言处理任务。
XNNPACK - 多平台优化的神经网络推理引擎 支持移动和嵌入式系统
GithubXNNPACK开源项目深度学习框架神经网络推理移动平台优化算子支持
XNNPACK是一个用于加速高级机器学习框架的神经网络推理引擎。它支持ARM、x86、WebAssembly和RISC-V等多种平台,提供低级性能原语,优化TensorFlow Lite、PyTorch等框架的运行效率。XNNPACK实现了丰富的神经网络操作符,在移动设备和嵌入式系统上表现出色,能高效运行各代MobileNet模型。在Pixel 3a上,XNNPACK能在44毫秒内完成FP32 MobileNet v3 Large的单线程推理,展现了其卓越的性能。
armnn - 针对Arm架构优化的高性能机器学习推理引擎
AndroidArm NNGithubTensorFlow Lite开源项目推理引擎机器学习
Arm NN是为Android和Linux平台设计的机器学习推理引擎,针对Arm Cortex-A CPU和Mali GPU进行了优化。通过Arm架构特定优化和Arm Compute Library,Arm NN在性能上表现出色。该引擎支持TensorFlow Lite和ONNX格式模型,提供TF Lite Delegate和解析器,方便开发者将机器学习模型集成到应用中。Arm NN使用C++17编写,可在多种目标平台和主机环境下构建。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号