Project Icon

LongNet

扩展Transformer到10亿标记的创新变体

LongNet是一个创新的Transformer变体,通过膨胀注意力机制扩展序列长度至超过10亿标记,同时保持对较短序列的高性能。该模型具有线性计算复杂度,适用于极长序列的分布式训练,并且其膨胀注意力可以无缝替代标准注意力。实验结果证明,LongNet在长序列建模和一般语言任务上表现出色,为处理整个语料库或互联网序列开辟了新路径。

Time-LLM - 开发用于时序预测的高级语言模型
GithubICLR 2024Time-LLM大语言模型开源项目时间序列预测框架重编程
Time-LLM将大型语言模型重新用于时序预测,利用其强大功能处理时序数据,并结合专家知识和任务说明提升预测精度。支持Llama-7B、GPT-2和BERT等模型,框架灵活且适应性广泛。了解Time-LLM的最新更新、使用案例和技术细节,访问我们的详细介绍及相关资源。
bitnet_b1_58-large - BitNet b1.58复现项目展示1比特量化语言模型的效能
1比特量化BitNetGithubHuggingface开源项目模型模型评估语言模型
本项目复现了BitNet b1.58的1比特量化语言模型,采用RedPajama数据集进行了1000亿token的训练。通过实施论文中提出的训练策略,项目成功重现了700M、1.3B和3B规模模型的性能。评估结果显示,在困惑度(PPL)和多项零样本任务中,复现模型与原论文报告的数据高度一致,证实了该方法在模型压缩和维持性能方面的有效性。项目还提供了详细的评估流程和命令,方便研究者进行复现和进一步探索。通过比较不同规模模型在各项任务上的表现,该研究为大规模语言模型的高效压缩和部署提供了valuable的实践参考。
Transformers_And_LLM_Are_What_You_Dont_Need - 分析深度学习模型在时间序列预测中的表现与局限
GithubMambaTransformers开源项目时间序列预测深度学习线性模型
本项目汇集大量研究论文和文章,深入分析变压器和大语言模型在时间序列预测中的表现及局限性。探讨这些深度学习模型处理时间序列数据的挑战,并介绍更适合的替代方法。为时间序列预测领域的研究和应用提供全面的参考资源。
RWKV-LM - 高性能并行化RNN,探索和应用RWKV模型
GithubRNNRWKVTransformer并行化开源项目性能
RWKV是一个高性能的并行化RNN,具有变换器级别的性能。该模型实现了快速的推理和训练速度,不依赖于传统的注意力机制,而是通过隐藏状态进行计算,优化了VRAM的使用,并支持处理无限长度的文本上下文。RWKV的这些特点使其在进行句子嵌入和处理复杂文本任务时显示出优越的能力。
simple-hierarchical-transformer - 分层Transformer模型探索多层次预测编码
GithubTransformer开源项目注意力机制深度学习神经网络自然语言处理
这个项目提出了一种在GPT模型中实现多层次预测编码的方法。它通过在Transformer中引入多层结构,结合局部注意力和全局信息传递。实验结果显示,该方法在维持性能的同时提升了效率。项目允许自定义层次结构、维度和注意力窗口大小,为研究人员提供了探索分层Transformer的实验工具。项目代码支持灵活配置,包括调整层次数量、模型维度和注意力窗口大小。这种设计使研究人员能够方便地进行不同参数的对比实验,有助于深入理解分层Transformer的性能特点。
Crossformer - 高效利用跨维度依赖的多变量时间序列预测模型
CrossformerGithubTransformer开源项目时间序列预测注意力机制深度学习
Crossformer是一种新型Transformer模型,针对多变量时间序列预测设计。该模型采用维度分段嵌入、两阶段注意力机制和层次编码器-解码器结构,有效捕捉时间和维度间的依赖关系。Crossformer在多个基准数据集上表现优异,为长序列预测和高维数据处理提供新思路。其开源实现便于研究人员和实践者探索应用。
transformers - 机器学习库,覆盖文本、视觉与音频处理
GithubHugging Face人工智能多模态开源项目机器学习自然语言处理
探索🤗 Transformers——一个功能全面的机器学习库,覆盖文本、视觉与音频处理。该库提供数千种可对接JAX、PyTorch或TensorFlow的预训练模型,适用于多种语言处理与多模态任务。主要功能包括: - 文本分类 - 信息提取 - 问答系统 - 摘要生成 - 翻译 - 文本生成 此外,还能处理表格问答、OCR及视觉问答等多模态任务。Transformers库易于使用,支持模型间的快速切换与无缝整合。
ttt-lm-pytorch - 基于测试时训练的高表达能力RNN模型
GithubRNNTTT序列建模开源项目机器学习隐藏状态
ttt-lm-pytorch项目提出了一种新型序列建模层,结合了RNN的线性复杂度和高表达能力的隐藏状态。该方法将隐藏状态设计为机器学习模型,通过自监督学习在测试阶段持续更新,因此被称为测试时训练(TTT)层。项目实现了TTT-Linear和TTT-MLP两种变体,分别采用线性模型和双层MLP作为隐藏状态,为长序列建模提供了高效替代方案。
Recurrent-LLM - RecurrentGPT 模拟 LSTM 实现无长度限制文本生成
AI As ContentsGithubRecurrent-LLMRecurrentGPTTransformer开源项目长短时记忆
RecurrentGPT 模拟 LSTM 的长短时记忆机制,解决了 GPT 生成文本长度受限的问题。每次生成时段文本并更新记忆,便于用户观测和修改。这提高了文本生成的可解释性和互动性,并展示了其在互动小说和个性化内容创作中的潜力。RecurrentGPT 运用了认知科学和深度学习的流行设计概念,推动了下一代计算机辅助写作系统的发展。
ChunkLlama - 双重块注意力技术实现大语言模型上下文窗口扩展
ChunkLlamaGithub大语言模型开源项目无需训练注意力机制长上下文
ChunkLlama项目开发了双重块注意力(DCA)技术,无需额外训练即可将大语言模型的上下文窗口扩展至原始长度的8倍以上。DCA可与主流外推技术和高效推理库兼容,支持Llama、Mistral等多种模型。实验表明,应用DCA后的Llama-2/3 70B模型能处理长达100k的上下文,并在长文本任务中表现出色。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号