Project Icon

CLIP-ViT-B-32-256x256-DataComp-s34B-b86K

基于DataComp训练的CLIP多模态视觉语言模型

CLIP ViT-B/32是一个在DataComp-1B数据集上训练的视觉语言模型,通过OpenCLIP框架实现。模型在ImageNet-1k分类任务中实现72.7%零样本准确率,支持图像分类、跨模态检索等研究任务。该开源项目为计算机视觉研究提供了重要的实验基础

clip4clip-webvid150k - 改进视频检索精度的解决方案
CLIP4ClipGithubHugging FaceHuggingfaceWebVid开源项目模型模型评估视频检索
CLIP4Clip结合CLIP模型和WebVid数据集,成功在视频文本检索中提高精度,利用150,000个视频文本对的训练提升性能。此模型擅长处理大规模视频数据,具备视觉-时间概念学习能力,适合高效视频搜索应用。其架构支持文本到视频的快速检索,提升搜索效率。
DIVA - 扩散模型辅助CLIP增强视觉理解能力
AI视觉CLIPDIVAGithub开源项目扩散模型迁移学习
DIVA是一种创新方法,利用扩散模型作为视觉助手优化CLIP表示。通过文本到图像扩散模型的生成反馈,DIVA无需配对文本数据即可提升CLIP视觉能力。在MMVP-VLM细粒度视觉评估基准上,DIVA显著提升了CLIP性能,同时保持了其在29个图像分类和检索基准上的强大零样本能力。这为增强视觉语言模型的视觉理解开辟了新途径。
siglip-base-patch16-224 - SigLIP改进CLIP模型 实现更高效的零样本图像分类和检索
GithubHuggingfaceSigLIP图像分类多模态模型开源项目模型自然语言处理计算机视觉
SigLIP是一种基于CLIP改进的多模态预训练模型,采用sigmoid损失函数优化语言-图像学习。该模型在WebLI数据集上以224x224分辨率预训练,适用于零样本图像分类和图像-文本检索任务。相比CLIP,SigLIP支持更大批量处理,且在小批量场景下表现更优。用户可通过Transformers库轻松加载和使用SigLIP模型,实现灵活高效的多模态应用。
blip-itm-large-flickr - 多任务视觉-语言理解与生成模型
BLIPGithubHuggingface图像-文本匹配图像描述开源项目机器学习模型语言-图像理解
BLIP是一个视觉-语言预训练框架,利用Flickr30k数据集提升图像-文本匹配性能。通过合成标题的生成与过滤机制,减少噪声数据对结果的影响。BLIP在多项任务上表现出色,包括图像-文本检索、图像标题生成和视觉问答,此外,还具备视频语言任务的泛化能力。该模型支持条件与无条件的图像标题生成,应用灵活多样。
LaVIT - 大语言模型理解生成视觉内容的统一框架
GithubLaVIT多模态大语言模型开源项目视觉内容理解视觉内容生成预训练策略
LaVIT项目是一个创新的多模态预训练框架,旨在增强大语言模型处理视觉内容的能力。该项目通过动态离散视觉标记化技术,将图像和视频转换为离散标记序列,使大语言模型能够理解和生成视觉内容。LaVIT支持图像和视频的理解、生成,以及多模态提示生成,为计算机视觉和自然语言处理的融合提供了新的可能性。
siglip-base-patch16-256-multilingual - 基于Sigmoid损失函数的多语言视觉语言模型
GithubHuggingfaceSigLIPWebLI数据集图像分类多模态模型开源项目模型零样本学习
SigLIP是一个基于CLIP架构的多语言视觉语言模型,通过Sigmoid损失函数优化训练效果。模型在WebLI数据集上以256x256分辨率预训练,实现零样本图像分类和图文检索功能。相比CLIP模型,在批量处理和整体性能上都有提升。模型经过16个TPU-v4芯片训练,支持多语言处理,主要应用于图像分类和跨模态检索任务。
dclm - 大型语言模型训练与评估的开源综合框架
DataComp-LMGithub大语言模型开源项目数据处理模型训练评估
DataComp-LM是一个开源的大型语言模型训练和评估框架。它提供了超过300T的CommonCrawl标准语料库、基于open_lm的预训练方案和50多项评估指标。研究人员可利用该框架在411M至7B参数规模下进行数据集构建实验。通过数据集优化,DataComp-LM已显著提升了模型性能,创建了多个跨规模表现优异的高质量数据集。
Visual-Chinese-LLaMA-Alpaca - 多模态中文模型VisualCLA开发与优化技术
CLIP-ViTChinese-Alpaca-PlusGithubLLaMAVisual-Chinese-LLaMA-Alpaca多模态模型开源项目
VisualCLA基于中文LLaMA/Alpaca模型,增加图像编码模块,实现图文联合理解和对话能力。目前发布测试版,提供推理代码和部署脚本,并展示多模态指令理解效果。未来将通过预训练和精调优化,扩展应用场景。
DeepSeek-VL - 高性能开源视觉语言模型 多模态理解与复杂场景应用
DeepSeek-VLGithub人工智能多模态理解开源开源项目视觉语言模型
DeepSeek-VL是一个开源视觉语言模型,为实际应用场景而设计。它能处理逻辑图表、网页、公式、科学文献、自然图像等,并在复杂场景中展现智能。模型提供1.3B和7B两种参数规模,支持基础和对话应用,可用于学术研究和商业用途。DeepSeek-VL采用MIT许可证,为研究人员和开发者提供了强大的视觉语言处理工具。
VILA - 创新的视觉语言模型预训练方法
GithubVILA多模态开源项目视觉语言模型量化预训练
VILA是一种新型视觉语言模型,采用大规模交错图像-文本数据预训练,增强了视频和多图像理解能力。通过AWQ 4位量化和TinyChat框架,VILA可部署到边缘设备。该模型在视频推理、上下文学习和视觉思维链等方面表现出色,并在多项基准测试中获得了优异成绩。项目完全开源,包括训练和评估代码、数据集以及模型检查点。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号