Project Icon

clap-htsat-fused

对比语言与音频学习中的多任务性能提升

CLAP项目使用对比语言-音频预训练模型结合音频编码器与文本编码器,提升多模态学习表现。该模型支持文本到音频检索、零样本音频分类及监督音频分类等多项任务。通过特征融合机制和关键词到字幕增强,CLAP能高效处理不同长度的音频输入。所发布的LAION-Audio-630K数据集及模型在文本到音频检索和零样本音频分类中表现优异,适用于零样本音频分类及音频、文本特征提取。

Leaderboard - 多语言语音识别基准测试平台 促进ASR系统评估
Github基准测试开源项目数据集模型评估语音识别
SpeechColab ASR leaderboard是一个开源的语音识别基准平台,集成测试集、模型集和标准化评估流程。平台提供多样化测试数据,涵盖广泛ASR场景,支持商业API和开源模型评估。它简化了ASR系统的基准测试、复现和验证过程,方便研究人员和开发者比较不同系统性能。通过统一的评估标准,该平台有助于推动语音识别技术的持续进步。
Seeing-and-Hearing - 创新框架实现多任务视听内容生成
GithubImageBind多模态生成开源项目扩散模型视频音频生成跨模态生成
Seeing-and-Hearing项目提出了一种优化框架,用于跨模态和联合视听内容生成。该方法使用预训练的ImageBind模型连接独立的视频和音频生成模型,实现双向条件生成和联合视听生成。这一技术适用于视频到音频、音频到视频、图像到音频等多种任务,为内容创作提供了新的可能。
ControlSpeech - 实现零样本语音克隆和风格控制的开源工具包
ControlSpeechGithub开源项目评估指标语言风格控制语音合成零样本说话人克隆
ControlSpeech是一个开源的语音合成项目,专注于实现零样本说话人克隆和语言风格控制。项目包含基线模型、VccmDataset数据集、评估指标和复现代码。通过解耦编解码器技术,ControlSpeech为研究人员和开发者提供了探索灵活语音合成的工具。该项目可应用于个性化语音助手、多语言配音等领域,为语音合成技术的研究和应用提供新的可能性。
LLaVA-HR - 混合分辨率适应技术助力多模态大模型
GithubLLaVA-HR多模态大语言模型开源项目视觉语言任务高分辨率
LLaVA-HR是一个采用混合分辨率适应技术的多模态大语言模型。它支持1536x1536的高分辨率图像输入,提高了细粒度视觉语言任务的性能。该模型在保持与LLaVA-1.5相近训练成本的同时,在多个基准测试中表现出色。LLaVA-HR为研究社区提供了一个新的基线,展示了混合分辨率适应方法在提升多模态模型性能方面的潜力。
CapsFusion - 创新的大规模图像描述生成框架
CapsFusionGithub图像文本数据大型多模态模型大语言模型开源项目数据集
CapsFusion是一个用于生成高质量图像描述的创新框架。该项目结合大型语言模型,融合真实和合成图像-文本对,解决了大规模多模态模型训练中的可扩展性和知识保留问题。CapsFusion提供120M数据集、模型和分布式推理代码,为多模态预训练研究提供重要资源。
CLIP-ViT-B-16-laion2B-s34B-b88K - 基于LAION-2B数据集训练的CLIP零样本图像分类模型
CLIPGithubHuggingfaceLAION-2B图像分类多模态模型开源项目模型零样本学习
CLIP-ViT-B-16-laion2B-s34B-b88K是基于LAION-2B英文数据集训练的CLIP ViT-B/16模型,在ImageNet-1k上达到70.2%的零样本Top-1准确率。该模型适用于零样本图像分类、图像文本检索等任务,也可用于图像分类微调、线性探测分类和图像生成引导等下游任务。本模型主要面向研究用途,不适合直接应用于商业场景。
wav2lip_288x288 - 改进版Wav2Lip 高分辨率唇形同步与先进算法集成
GithubWav2Lip唇形同步开源项目模型优化深度学习视频处理
wav2lip_288x288是Wav2Lip项目的改进版本,致力于提升唇形同步的质量和分辨率。该项目支持288x288至512x512的模型尺寸,整合了PRelu、LeakyRelu等先进技术,并采用SAM-UNet架构。项目提供详细的训练流程,包括Syncnet和wav2lip-Sam的训练步骤。目前正在开发基于DINet的全流程训练功能,涵盖使用DeepSpeech的Syncnet训练和DINet帧训练。这些优化旨在实现更精确、更高质量的唇形同步效果。
audiolm-pytorch - 基于Pytorch的音频生成模型AudioLM
AudioLMEnCodecGithubPytorchSoundStream开源项目音频生成
AudioLM是一个基于Pytorch的音频生成模型,具有T5引导的文本到音频转换功能。该项目还兼容SoundStream和Facebook的EnCodec,并提供了多个音频编码和解码模块。用户可以通过完整的训练和使用流程,包括SoundStream、分层Transformer和基于文本条件的音频合成,来进行音频生成技术的研究和开发。
dla - 深度学习音频处理综合课程
Deep Learning for AudioGithubHSE声源分离开源项目语音生成语音识别
此课程详细介绍了音频深度学习的各个方面,包括数字信号处理、语音识别、源分离、文本转语音、语音转换、语音生物识别及音频生成扩散模型。每周更新课程材料,涵盖从理论讲解到实操的全面学习。提供全面的作业和丰富的学习资源,适合深入了解音频处理技术的人士。
AudioLDM2 - 多功能文本到音频生成开源项目
AudioLDM 2Github人工智能开源项目文本生成音频深度学习音频合成
AudioLDM2是一个开源的文本到音频生成项目,支持创建音效、音乐和语音。该模型能生成超过10秒的音频,输出高达48kHz的高保真音频,并与Hugging Face Diffusers库集成。AudioLDM2提供多个预训练检查点,适用于不同生成任务,支持CPU、CUDA和MPS设备。用户可通过命令行或Web应用程序使用,提供灵活的音频生成选项。项目还包括随机种子调整功能,可优化不同硬件上的性能表现。支持批量生成和自动质量控制,允许用户生成多个候选音频并选择最佳结果。此外,项目提供了详细的使用说明和参数设置选项,方便用户根据需求调整生成过程。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号