Project Icon

PyDIff

金字塔扩散模型提升低光照图像增强效果

PyDiff项目利用金字塔扩散模型技术增强低光照图像。在LOL数据集上,其PSNR达27.09,SSIM为0.93,展现出优异性能。项目开源了训练和测试代码,支持多GPU训练,并可用于自定义低级任务数据集。PyDiff为低光照图像增强研究提供了有力工具。

AsyncDiff - 通过异步去噪实现扩散模型并行加速
AsyncDiffGithub加速推理开源项目异步去噪扩散模型模型并行
AsyncDiff是一种创新的扩散模型加速方案,通过将模型分割并在多设备上异步并行处理来提高效率。这种方法巧妙利用了扩散步骤间的相似性,将顺序去噪转变为异步过程,有效打破了组件间的依赖关系。AsyncDiff不仅大幅降低了推理时间,还保持了生成质量。目前已支持Stable Diffusion、ControlNet和AnimateDiff等多种主流扩散模型。
DiffMorpher - 扩散模型驱动的高质量图像变形技术
DiffMorpherGithub图像变形开源项目扩散模型深度学习计算机视觉
DiffMorpher是一项基于扩散模型的图像变形技术。该项目结合AdaIN和重新调度采样方法,实现高质量、连续的图像变形。DiffMorpher不仅适用于人脸,还能处理各种一般物体的变形,拓展了图像编辑的应用范围。项目同时推出MorphBench,作为评估一般物体图像变形效果的首个基准数据集。
InstanceDiffusion - 实现精确实例级图像生成控制的突破性方法
GithubInstanceDiffusion图像生成实例级控制开源项目文本到图像条件生成
InstanceDiffusion为文本到图像的扩散模型引入精确的实例级控制。该技术支持每个实例的自由语言条件,可灵活指定实例位置,包括单点、涂鸦、边界框和实例分割掩码。相比现有技术,InstanceDiffusion在框输入的AP50上提升2.0倍,掩码输入的IoU提高1.7倍,为图像生成和编辑领域带来新的可能性。
denoising-diffusion-pytorch - 生成模型新方法:Pytorch中的Denoising Diffusion
Denoising Diffusion Probabilistic ModelGithubLangevin采样Pytorch开源项目扩散模型生成建模
Denoising Diffusion Probabilistic Model在Pytorch中的实现,通过去噪得分匹配估计数据分布梯度,并使用Langevin采样生成样本。这种方法可能成为GANs的有力竞争者。项目支持多GPU训练,提供详细的安装和使用指南,是研究人员和开发者的高效工具,支持1D序列数据和图像数据的生成和训练。
MedSegDiff - 创新医学图像分割框架
GithubMedSegDiff人工智能医学图像分割开源项目扩散模型深度学习
MedSegDiff是一个创新的医学图像分割框架,基于扩散概率模型(DPM)。该方法通过添加高斯噪声并学习逆向去噪过程来实现分割。利用原始图像作为条件,MedSegDiff从随机噪声生成多个分割图,并进行集成获得最终结果。这种方法能够捕捉医学图像中的不确定性,在多个基准测试中表现优异。MedSegDiff支持多种医学图像分割任务,包括皮肤黑色素瘤和脑肿瘤分割等,并提供详细使用说明和示例。
DiG - 基于门控线性注意力的高效可扩展扩散模型
DiGDiffusion ModelsGated Linear AttentionGithub图像生成开源项目深度学习
DiG项目提出了一种基于门控线性注意力的扩散模型,用于解决现有模型在可扩展性和计算效率方面的挑战。该模型在高分辨率下展现出显著的训练速度提升和内存节省,性能优于DiT。DiG在不同计算复杂度下表现出色,随着模型深度/宽度增加或输入令牌增强,FID值持续下降。与其他次二次时间复杂度的扩散模型相比,DiG在多种分辨率下都展现出卓越的效率。
Diffusion_models_from_scratch - 完整实现扩散模型的开源框架与教程
Diffusion模型GithubImageNetU-Net图像生成开源项目预训练模型
该项目提供了一个完整的扩散模型实现框架,包含DDPM、DDIM和无分类器引导模型。项目特点包括:基于ImageNet 64x64数据集的预训练模型、详细的环境配置和数据准备指南、全面的训练和推理脚本,以及多种模型架构和优化策略。开发者可以利用此框架轻松训练自定义扩散模型或使用预训练模型生成图像。
Diffusers_IPAdapter - 基于Diffusers的多功能IPAdapter实现
AI绘图DiffusersGithubIPAdapter图像处理开源项目深度学习
Diffusers_IPAdapter是基于Hugging Face Diffusers的IPAdapter模型实现。该项目支持多输入图像处理、权重调整和负面图像输入,提供了统一的IPAdapter类接口。其简洁的代码结构便于维护,使用户能轻松实现高质量图像生成和编辑。这一工具适合需要精细控制图像生成的研究人员和开发者使用。
zero123-diffusers - 单图转3D模型的AI技术突破
3D对象GithubHuggingfaceZero-1-to-3人工智能图像生成开源项目模型研究模型
Zero-1-to-3项目展示了AI领域的重要进展,实现从单一2D图像到3D模型的转换。基于Stable Diffusion技术,该项目为研究人员提供了探索大规模模型部署和生成模型特性的新工具。尽管在真实感和文本渲染方面有待改进,但其在计算机视觉和3D建模领域的应用前景广阔。使用时需谨慎,确保符合伦理标准。
FastDiff - 高效生成高保真语音的快速条件扩散模型
FastDiffGithubPyTorch开源项目条件扩散模型语音合成高保真语音合成
FastDiff项目实现了一种高效生成高保真语音的条件扩散模型。该项目在GitHub上提供了开源实现和预训练模型,支持包括LJSpeech、LibriTTS和VCTK在内的多种数据集。适用于语音合成和神经语音编解码等任务,并支持多GPU并行训练。项目还提供了详细的推理和训练指南,以及预处理工具和训练配置示例。FastDiff代码参考了NATSpeech和Tacotron2等项目,广泛适用于研究和实际应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号