Project Icon

CoCa-pytorch

CoCa模型的PyTorch开源实现

CoCa-pytorch项目提供了CoCa(Contrastive Captioners)模型的PyTorch实现。该项目将对比学习融入传统的编码器/解码器transformer,优化了图像到文本的转换。项目采用PaLM的transformer架构,包含单模态、多模态transformers和交叉注意力模块。这一实现为研究和开发图像-文本基础模型提供了有力工具。

attention-is-all-you-need-pytorch - PyTorch版Transformer模型,采用自注意力机制
BPEGithubPyTorchTransformer modelWMT 2014 英德翻译开源项目自注意力机制
本项目基于《Attention is All You Need》论文实现了PyTorch版Transformer模型,利用自注意力机制替代传统的卷积和循环结构,在WMT 2014英德翻译任务中表现出色。项目支持模型训练和翻译,部分字节对编码相关部分尚未完全测试,仍在开发中。提供详细的教程,包括数据预处理、模型训练和测试步骤,为用户提供全面指导。
transformers-interpret - 快速解读Transformer模型的工具,只需2行代码
GithubTransformers Interprettransformers可视化开源项目文本分类解释工具
Transformers-interpret是一款为Transformer模型设计的解释工具,只需简单代码即可实现。支持文本和计算机视觉模型,并可在笔记本中展示或保存为PNG和HTML文件。通过导入预训练模型和tokenizer,用户能快速获得预测分类解释,并提供可视化功能。此项目基于Captum库构建,支持多标签分类等功能,帮助开发者深入理解模型决策。
GPT2 - PyTorch优化实现的自然语言生成模型
GPT-2GithubPyTorch开源项目文本生成深度学习自然语言处理
该项目是OpenAI GPT-2模型的PyTorch实现,提供模型训练、文本生成和指标可视化功能。代码设计兼顾可读性和性能优化,支持多GPU训练、自动混合精度和梯度检查点等特性。项目提供详细的命令行使用说明,并可在Google Colab中进行交互式文本生成和模型评估。
pytorch-widedeep - 基于PyTorch的多模式深度学习工具包,结合表格、文本和图像数据
Githubpytorch-widedeep多模态深度学习宽和深模型开源项目机器学习表格数据
pytorch-widedeep是一个基于Google的Wide and Deep算法的开源项目,专为多模式数据集设计,支持结合表格、文本和图像数据。该工具包提供多种架构和自定义模型支持,如TabMlp、BasicRNN、TabTransformer等。详细的安装、快速入门和使用扩展步骤可在官方文档中找到。pytorch-widedeep适合多模式数据的深度学习研究和应用。
transformer_latent_diffusion - 基于 PyTorch 的 Transformer 潜在扩散文本生图模型
AI绘图GithubLatent DiffusionPyTorchTransformer图像生成开源项目
Transformer Latent Diffusion 是一个基于 PyTorch 的开源项目,实现了文本到图像的潜在扩散模型。该模型体积小、生成速度快、性能合理,可在单 GPU 上快速训练。项目代码简洁,依赖少,注重数据质量。它提供数据处理工具,支持自定义训练,并进行了多项性能优化。项目展示了 256 分辨率随机样本和 CLIP 插值等生成示例。
titok-pytorch - 32 Token图像编码与重建框架
GithubPytorchTiTok图像处理图像重建开源项目深度学习
TiTok-Pytorch是一个基于PyTorch实现的图像编码和重建框架,源自ByteDance的研究。该项目将图像压缩为32个token,实现高效的图像重构和生成。TiTok-Pytorch提供简便的安装和使用方法,支持图像tokenization、重建和代码提取。这个框架适用于图像压缩、生成和重建等领域的深度学习项目,为高效图像处理提供了新的解决方案。
PaddleOCR2Pytorch - 开源工具实现PaddleOCR模型向PyTorch框架的转换
GithubOCR系统PaddleOCR多语言识别开源项目文本检测文本识别
PaddleOCR2Pytorch是一个开源项目,致力于将PaddleOCR模型转换为PyTorch框架可用的版本。项目支持多种OCR算法,涵盖文本检测、方向分类和文本识别,同时提供丰富的预训练模型。它不仅使PyTorch用户能够便捷使用PaddleOCR的优质模型,还为跨深度学习框架的模型转换提供了实用参考。
CLIPSelf - 视觉Transformer自蒸馏实现开放词汇密集预测
CLIPSelfCOCOGithub密集预测开放词汇开源项目视觉Transformer
CLIPSelf项目提出创新自蒸馏方法,使视觉Transformer能进行开放词汇密集预测。该方法利用模型自身知识蒸馏,无需标注数据,提升了目标检测和实例分割等任务性能。项目开源代码和模型,提供详细训练测试说明,为计算机视觉研究提供重要资源。
magvit2-pytorch - MagViT2视频生成和理解模型的PyTorch开源实现
AI模型GithubMagViT2Pytorch实现开源项目视频生成语言模型
MagViT2是基于语言模型的最新视频生成和理解技术。该PyTorch实现提供高效视频标记器和训练器,支持大规模数据集。项目包含无查找量化器,适用于多种模态。灵活架构设计允许自定义层和注意力机制,为研究人员提供探索和改进视频生成技术的工具。
CogVLM - 开源视觉语言模型,提升图像理解与跨模态对话功能
CogAgentCogVLMGithub图像理解多回合对话开源项目跨模态基准测试
CogVLM和CogAgent是领先的开源视觉语言模型,专注于图像理解和跨模态任务。CogVLM-17B拥有100亿视觉参数和70亿语言参数,并在NoCaps、Flicker30k等十个经典跨模态基准测试上表现出色。CogAgent在CogVLM的基础上改进,增添了GUI图像代理能力,支持1120*1120分辨率的图像理解,并在VQAv2、TextVQA等九个基准测试中表现优秀。该项目提供详细的技术文档、示例代码和Web演示,用户可以方便地进行模型推理和微调。了解更多信息,请访问项目主页。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号