Project Icon

linformer

线性复杂度自注意力机制的PyTorch实现

Linformer是一个基于PyTorch的高效自注意力机制实现。通过将注意力矩阵投影到低维度空间,它实现了线性复杂度,适合处理长序列数据。项目提供简洁API,支持构建语言模型和自注意力层。尽管在自回归任务和可变序列长度方面有局限,但其高效性已在Facebook的生产环境中得到验证,为处理大规模数据提供了新的解决方案。

commented-transformers - 精细注释的Transformer在PyTorch中的实现
Attention机制BERTGPT-2GithubPyTorchTransformer开源项目
详细注释的Transformer实现,涵盖从头创建Transformer系列,包括注意力机制和整体Transformer的实现。提供双向注意力、因果注意力及因果交叉注意力的实现,以及GPT-2和BERT模型的单文件实现,兼容torch.compile(..., fullgraph=True)以提高性能。
PowerInfer - 消费级GPU上大型语言模型高效推理引擎
GPU加速GithubPowerInfer大语言模型局部性设计开源项目混合CPU/GPU使用
PowerInfer是一款在个人电脑上针对消费级GPU设计的高效大型语言模型(LLM)推理引擎。它结合激活局部性原理和CPU/GPU混合技术,通过优化热/冷激活神经元的处理方式,显著提高推理速度并降低资源消耗。软件还融入了适应性预测器和神经元感知技术,优化了推理效率和精度,支持快速、低延迟的本地模型部署。
gliner_large-v2.1 - 通用命名实体识别模型,适合资源有限的应用场景
GLiNERGithubHuggingface双向Transformer命名实体识别多语言开源开源项目模型
GLiNER是使用双向Transformer编码器的通用命名实体识别模型,能够识别多种实体类型。相比于传统NER模型和体积庞大的语言模型,GLiNER在资源有限的情况下表现出卓越的灵活性和效率。最新的GLiNER v2.1版本支持单语和多语模型,性能表现依旧出色。用户可以通过安装GLiNER Python库,将其方便地集成到项目中,适用于多种语言的文本预测任务。
pytorch-openai-transformer-lm - 基于PyTorch的OpenAI Transformer语言模型实现
GithubOpenAIPyTorchTransformer Language Model开源项目模型预训练
该项目实现了OpenAI Transformer语言模型在PyTorch中的复现,提供了预训练权重加载脚本及模型类。采用固定权重衰减和调度学习率优化模型,支持对ROCStories Cloze任务进行微调,效果接近原始TensorFlow实现。适用于深度学习研究和语言模型的生成与分类任务。
pytorch-forecasting - 前沿的时间序列预测工具包,提供灵活的高层API
GithubPyTorch ForecastingPyTorch Lightning开源项目时间序列预测深度学习神经网络
PyTorch Forecasting 是一个基于 PyTorch 的时间序列预测包,适用于实际应用和研究。它支持多种神经网络架构及自动日志记录,利用 PyTorch Lightning 实现多 GPU/CPU 的扩展训练,并内置模型解释功能。关键特性包括时间序列数据集类、基本模型类、增强的神经网络架构、多视角时间序列指标和超参数优化。安装简便,支持 pip 和 conda,文档详尽,并包含模型比较和使用案例。
gliner_medium-v2.1 - 多功能通用型命名实体识别模型GLiNER
GLiNERGithubHuggingface人工智能命名实体识别开源项目机器学习模型自然语言处理
GLiNER是一种基于双向Transformer编码器的命名实体识别模型,可识别任意类型的实体。该模型为资源受限场景提供了实用的替代方案,克服了传统NER模型仅限预定义实体的局限性,同时避免了大型语言模型的高成本问题。GLiNER支持多语言,提供不同规模的版本,安装使用简便。在NER基准测试中表现优异,适用于多种应用场景。
AttentionDeepMIL - 深度多实例学习的注意力机制算法实现
GithubMNISTPyTorch多实例学习开源项目注意力机制深度学习
AttentionDeepMIL是一个开源的深度多实例学习算法项目,基于PyTorch框架实现。它在LeNet-5模型基础上创新性地添加了注意力机制的MIL池化层,适用于图像分类等多实例学习任务。该项目提供完整的实验环境,包括MNIST-BAGS数据集处理、模型架构和训练脚本,支持CPU和GPU运行。此外,AttentionDeepMIL还展示了在医学图像分析领域的应用潜力,包括对乳腺癌和结肠癌组织病理学数据集的实验支持。
jina-bert-flash-implementation - 将BERT与Flash-Attention结合的高效模型实现
BERTFlash-AttentionGPU加速GithubHuggingface开源项目模型模型配置深度学习
本项目展示了一种将Flash-Attention技术与BERT模型相结合的实现方案。内容涵盖了依赖安装指南、参数配置说明和性能优化策略。核心功能包括Flash Attention的应用、局部注意力窗口的实现以及稀疏序列输出。此外,项目还引入了多项可调节的配置选项,如融合MLP和激活检查点,以适应各种训练环境和硬件条件。该实现的目标是提高BERT模型在处理大规模数据集时的训练效率和内存利用率。
matmulfreellm - 高效的无矩阵乘法语言模型,完全兼容Transformers库
GithubMatMul-Free LMTransformer++开源项目深度学习矩阵乘法语言模型
MatMul-Free LM是一种无需矩阵乘法操作的高效语言模型架构,兼容🤗 Transformers库,支持370M至2.7B参数的模型。该模型使用高效的三值权重,在计算效率和性能提升方面表现优异。安装需求包括PyTorch、Triton和einops。用户可以轻松初始化模型,并使用预训练模型进行文本生成,适用于各种高效语言建模应用场景。
GLiNER - 通用轻量级命名实体识别模型
BERTGLiNERGithub命名实体识别开源项目机器学习自然语言处理
GLiNER是一个通用轻量级的命名实体识别模型,采用双向转换器编码器架构。它能识别任意类型的实体,填补了传统NER模型和大型语言模型之间的空白。GLiNER具有灵活性高、体积小、效率高的特点,适用于资源受限的场景。该模型支持自定义实体类型,可应用于信息提取、文本分类等多种自然语言处理任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号