Project Icon

parti-pytorch

Google Parti模型的PyTorch实现 基于注意力的文本到图像生成

本项目是Google Parti模型的PyTorch实现,Parti是一种基于纯注意力机制的文本到图像生成神经网络。项目包含ViT VQGan VAE训练代码和视觉Transformer的优化,提高了训练效率。实现了简便的安装和使用流程,支持条件生成和分类器引导。这为研究人员和开发者提供了探索和改进文本到图像生成技术的平台。

PixArt-XL-2-1024-MS - 快速训练的高性能文本到图像AI模型
AI模型GithubHuggingfacePixart-α图像生成开源项目文本生成图像模型深度学习
PixArt-XL-2-1024-MS是一个基于Transformer的文本到图像生成模型,采用纯Transformer块进行潜在扩散。该模型可直接生成1024px图像,训练效率高,仅用Stable Diffusion v1.5约10%的训练时间即达到可比性能。模型适用于艺术创作、教育工具开发等领域的研究,为探索高效文生图技术提供了新思路。
Visual-Style-Prompting - 创新的视觉风格提示方法实现文本到风格化图像生成
GithubVisual Style Prompting开源项目扩散模型文本到图像生成自注意力机制风格控制
Visual-Style-Prompting项目提出创新的视觉风格提示方法,通过交换自注意力层键值实现多样化图像生成并保持特定风格。无需微调即可使用,生成图像忠实反映参考风格。经广泛评估,该方法在多种风格和文本提示下表现优异,准确匹配文本描述并最佳呈现参考风格。
text2image-prompt-generator - 基于GPT-2的文本到图像提示生成器
AI绘图GPT-2GithubHuggingfaceMidjourney开源项目提示词生成文本转图像模型
这是一个基于GPT-2模型的文本到图像提示生成器,通过250,000条Midjourney用户提示进行微调。该模型可为DALL·E等各种文本到图像系统自动完成提示,支持特定参数和权重设置,实现对生成图像的精确控制。它为创作者提供了有效使用文本到图像技术的工具,适用于各种图像生成场景。
vit-base-patch16-384 - Vision Transformer:基于图像分块的高效视觉识别模型
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型深度学习计算机视觉
Vision Transformer (ViT) 是一种基于Transformer架构的视觉识别模型,在ImageNet-21k上进行预训练,并在ImageNet 2012上微调。模型采用图像分块和序列化处理方法,有效处理384x384分辨率的图像。ViT在多个图像分类基准测试中表现优异,适用于各种计算机视觉任务。该预训练模型为研究人员和开发者提供了快速开发高精度图像识别应用的基础。
instruct-pix2pix - 基于文本指令的智能图像编辑深度学习模型
AI绘图GithubHuggingfaceInstructPix2PixStable Diffusion图像编辑开源项目模型深度学习
InstructPix2Pix是一个基于Stable Diffusion技术的深度学习模型,能够根据文本指令编辑图像。该模型可以理解并执行多种复杂的图像编辑任务,用户只需提供原始图片和文字编辑指令,即可生成符合要求的新图像。这项技术简化了复杂图像处理流程,为图像编辑和创意设计领域提供了新的可能性。
pytorch-widedeep - 基于PyTorch的多模式深度学习工具包,结合表格、文本和图像数据
Githubpytorch-widedeep多模态深度学习宽和深模型开源项目机器学习表格数据
pytorch-widedeep是一个基于Google的Wide and Deep算法的开源项目,专为多模式数据集设计,支持结合表格、文本和图像数据。该工具包提供多种架构和自定义模型支持,如TabMlp、BasicRNN、TabTransformer等。详细的安装、快速入门和使用扩展步骤可在官方文档中找到。pytorch-widedeep适合多模式数据的深度学习研究和应用。
pixart-900m-1024-ft-v0.7-stage1 - 文本到图像生成的多功能工具
AI绘图GithubHuggingfaceStable Diffusion幻想艺术开源项目文本到图像模型赛博朋克
该项目提供了多样化的文本到图像生成功能,能输出多种视觉风格和细节丰富的图片。从外星风情到赛博朋克风格、从魔法场景到未来都市,涵盖广泛艺术表达,适合用于游戏设计和创意项目。项目强调高分辨率和细节,为多媒体作品提供支持。
ban-vqa - 高性能视觉问答与图像实体定位模型
Bilinear Attention NetworksGithub图像处理开源项目深度学习神经网络视觉问答
项目实现了Bilinear Attention Networks,应用于视觉问答和图像实体定位。VQA 2.0测试集上性能优异,单模型得分70.35,集成模型达71.84。Flickr30k实体任务中,Recall@1/5/10分别为69.88/84.39/86.40。基于PyTorch构建,包含预训练模型和完整工作流程,便于进行相关研究或实际应用开发。
vit-base-patch32-384 - Vision Transformer图像分类模型支持大规模数据训练
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型深度学习计算机视觉
Vision Transformer(ViT)是一款图像分类模型,采用Transformer编码器架构,通过将图像分割为固定大小patch进行处理。模型在包含1400万张图像的ImageNet-21k数据集完成预训练,并在ImageNet-1k数据集上进行384x384分辨率的微调。提供预训练权重,可直接应用于图像分类或迁移学习任务。
bigaspv2lustify-v10-sdxl - 高精度的文本生成图像模型,提升视觉真实性
GithubHuggingfacestable-diffusiontext-to-image图像生成开源项目模型现实主义
该项目展示了一个结合Stable Diffusion技术的先进文本生成图像模型,能够生成非常逼真的图像效果。由用户ffjggrtbjibv创建,其模型适用于复杂图像创建与需要真实效果的场景。凭借现代化的图像生成算法,这个模型在图像质量和细节表现上得到显著提升,为创作提供更大的灵活性与创意空间。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号