Project Icon

recurrent-interface-network-pytorch

无需级联网络的高效图像视频生成模型

Recurrent Interface Network (RIN)是一个基于PyTorch的深度学习模型,用于高效生成高质量图像和视频。该模型结合了诱导集合注意力块、潜在空间自我调节技术和新型噪声函数,无需使用级联网络即可实现出色的生成效果。RIN还支持高分辨率图像的增强噪声处理和线性gamma调度,为图像生成任务提供了灵活的解决方案。

CV-VAE - 兼容预训练模型的视频生成技术
CV-VAEGithubVAE兼容性开源项目潜在空间视频生成
CV-VAE是一种视频变分自编码器,专为潜在生成视频模型设计。它与预训练图像和视频模型(如SD 2.1和SVD)兼容,用于视频重建和生成。项目提供代码实现和预训练模型权重,支持视频重建和文本到视频转换。CV-VAE为视频生成技术研究提供了新的工具和方向。
gan-compression - 条件生成对抗网络的高效压缩技术
GAN CompressionGithub图像生成开源项目性能优化条件生成对抗网络模型压缩
GAN Compression项目提出了一种通用的条件生成对抗网络压缩方法,可将pix2pix、CycleGAN等模型的计算量减少9-29倍,同时保持视觉质量。该方法适用于多种生成器架构和学习目标,支持配对和非配对数据。项目开源了预训练模型、演示和教程,便于研究和应用。
generative-models - SV4D与SV3D一类的创新模型
GithubSDXL-TurboSV3DSV4D开源项目热门稳定AI视频合成
Generative Models项目展示了多个创新模型如SV4D与SV3D,专注于视频到4D扩散建模和图像到视频的多视角合成,旨在提供高分辨率和时间连贯性的研究工具。最新技术报告和视频概览现已发布,支持通过简单的脚本和快速入门指南直接体验模型效果,适用于研究及教育用途。
unet.cu - UNet扩散模型的高性能CUDA实现
CUDAGithubUNet卷积神经网络图像生成开源项目深度学习
这个开源项目使用纯C++/CUDA实现了UNet扩散模型训练框架,支持无条件扩散。框架包含线性层、组归一化、注意力等核心算子的GPU加速实现,重点优化3x3卷积。通过多次迭代提升CUDA kernel性能,训练速度达PyTorch的40%。项目展示了深度学习框架在GPU上的高效实现过程,为相关开发提供参考。
returnn - 多GPU优化的Theano/TensorFlow循环神经网络框架
GithubLSTMRETURNN多GPU环境开源项目神经网络训练速度
RETURNN是一个基于Theano和TensorFlow的现代循环神经网络框架,优化于多GPU环境下的快速可靠训练。其主要特点包括简便的配置与调试、支持多种实验模型,以及高效的训练和解码速度。项目还支持小批量训练、序列分块训练、长短期记忆网络、多维LSTM和大数据集内存管理,广泛应用于机器翻译和语音识别领域。RETURNN提供详尽的文档和使用教程,并通过StackOverflow标签提供社区支持。
distrifuser - 高效分布式并行推理助力高分辨率图像生成
DistriFusionGPU加速Githubdiffusion模型并行推理开源项目高分辨率
DistriFusion是一种用于高分辨率扩散模型的分布式并行推理算法。该方法无需额外训练,通过多GPU协同工作加速推理过程,同时保持图像质量。其创新的补丁交互技术解决了传统方法的碎片化问题,在高分辨率图像生成任务中显著提升了性能。该项目已在CVPR 2024被评为亮点工作,并开源了相关代码。
egnn-pytorch - PyTorch实现的E(n)等变图神经网络
EGNNGithub分子预测图神经网络坐标更新开源项目特征更新
这个开源项目使用PyTorch实现了E(n)等变图神经网络(EGNN)。项目提供了EGNN的简洁接口,支持边特征和稀疏邻居等功能。EGNN在动力系统建模和分子活性预测等任务中表现领先。项目还包含详细示例和稳定性优化方法,适用于处理复杂的图结构数据。
GLIGEN - 开放式条件引导的文本到图像生成模型
GLIGENGithub人工智能开源项目文本到图像生成深度学习计算机视觉
GLIGEN是一个创新的开放式条件引导文本到图像生成模型。它扩展了冻结文本到图像模型的功能,支持框、关键点和图像等多种引导条件。在COCO和LVIS数据集的零样本测试中,GLIGEN大幅超越了现有的有监督布局到图像生成基线。这项技术在开放世界场景下的应用前景广阔,同时也需关注其局限性和伦理影响。
muse-maskgit-pytorch - 基于掩码生成变压器的PyTorch文本到图像生成框架
AI绘图GithubMaskGitMusePyTorch图像生成开源项目
muse-maskgit-pytorch是一个实现Muse: Text-to-Image Generation via Masked Generative Transformers的开源项目。该框架集成了VQGanVAE和MaskGit模型,支持基础图像生成和超分辨率处理。项目提供了完整的训练和生成流程,包括VAE训练、基础MaskGit和超分辨率MaskGit的使用方法,为研究人员提供了探索文本到图像生成技术的工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号