Project Icon

self-refine

LLM自我反馈迭代优化自然语言处理任务

Self-Refine是一个创新的自然语言处理项目,利用大型语言模型(LLM)生成、评估和改进自身输出。通过迭代过程,LLM对自己的工作提供反馈并持续优化结果。该项目在缩写生成、对话响应和代码可读性改进等多个任务中展现了效果。这种自我完善方法为提升AI系统性能和可靠性开辟了新途径。

mlc-llm - 通用大语言模型高性能部署引擎
AI模型优化GithubMLC LLMMLCEngine开源项目机器学习编译器高性能部署
MLC LLM是一款用于大语言模型的高性能部署引擎,支持用户在各种平台上开发、优化和部署AI模型。核心组件MLCEngine通过REST服务器、Python、JavaScript、iOS和Android等接口提供OpenAI兼容的API,支持AMD、NVIDIA、Apple和Intel等多种硬件平台。项目持续优化编译器和引擎,与社区共同发展。
RLHF-V - 通过细粒度反馈优化多模态大语言模型
GithubRLHF-V人类反馈多模态大语言模型幻觉减少开源项目行为对齐
RLHF-V框架通过细粒度的人类纠正反馈来优化多模态大语言模型的行为。该项目收集高效的纠正反馈数据,让标注者修正模型回答中的幻觉片段。实验表明,仅需1小时训练即可将基础模型的幻觉率降低34.8%。RLHF-V在Muffin模型上的验证展示了显著的性能提升,有效提高了模型的可信度。
self-speculative-decoding - 无损加速大型语言模型的创新推理方案
GithubLLM加速Self-Speculative Decoding层跳过开源项目推理优化草稿验证
Self-Speculative Decoding是ACL 2024的一个开源项目,提出了一种无损加速大型语言模型(LLMs)的新方法。该技术通过草稿生成和验证两个阶段,在不增加额外训练和内存的情况下提高LLM推理速度。这一创新方案保证了输出质量和模型兼容性,为LLM加速提供了高效且易于实施的解决方案。
RLAIF-V - 多模态大模型对齐的开源AI反馈框架
GithubRLAIF-V人工智能反馈可信性多模态大语言模型开源开源项目
RLAIF-V项目提出了一种新的多模态大模型对齐框架,通过开源AI反馈实现了超越GPT-4V的可信度。该框架利用高质量反馈数据和在线反馈学习算法,有效减少模型幻觉,提高学习效率和性能。项目开源的代码、模型权重和数据集为多模态人工智能研究提供了重要资源。
awesome-azure-openai-llm - 揭示Azure OpenAI与大型语言模型(LLM)的综合功能
API集成Azure OpenAIGithub信息检索大语言模型开源项目语言模型训练
提供Azure OpenAI和大型语言模型(LLM)的综合参考,包括服务与技术的详细比较和专有功能介绍。深入探讨私有网络支持、角色认证和AI内容过滤的优势,非常适合希望全面了解并运用Azure OpenAI整合服务的技术用户。
demonstrated-feedback - DITTO方法通过示范反馈优化语言模型对齐
DITTOGithub对齐开源项目演示反馈自定义LLM语言模型
Demonstrated-feedback项目开发了DITTO方法,利用少量示范反馈对齐语言模型。这种方法无需大规模数据集,能够学习细粒度的风格和任务对齐。DITTO在新闻、电子邮件和博客等领域的表现优于现有技术。这一创新为语言模型的个性化提供了高效解决方案。
SPPO - 自我对弈优化提升语言模型对齐效果
AlpacaEval 2.0Gemma-2-9B-It-SPPO-Iter3GithubLlama-3-8B-InstructMistral-7B-InstructSPPO开源项目
SPPO采用自我对弈框架和新的学习目标,有效提升大规模语言模型性能。通过理论推导和多数据集实证验证,SPPO无需外部信号即可超越GPT-4等模型。该项目源代码和多个优化模型如Mistral-7B、Llama-3-8B、Gemma-2-9B均已开源,详情可参考相关论文。
RecAI - 衔接大语言模型和推荐系统
AI代理GithubLLM4RecRecAI开源项目推荐系统深度学习
RecAI 项目旨在通过整合大规模语言模型 (LLMs) 开发更先进的推荐系统,主要提升交互性、可解释性和控制性。项目研究了多种技术,包括推荐 AI 代理、个性化提示、语言模型微调、模型解释器和评价系统。目标是通过全面的方法,解决 LLM4Rec 在实际应用中的需求,打造更加智能和可信赖的推荐系统。
LLMCompiler - 提升大语言模型性能的并行函数调用框架
GithubLLMCompiler优化编排并行函数调用开源项目效率提升模型兼容
LLMCompiler框架通过并行函数调用提升大语言模型的执行效率。它自动识别可并行任务,减少延迟和成本,同时提升准确性。用户只需提供工具和上下文示例,LLMCompiler就能优化函数调用编排。支持开源和闭源模型,包括LLaMA和OpenAI的GPT模型。LLMCompiler在不同任务中展示了显著的延迟加速、成本节省和准确性提升,是处理复杂问题的理想工具。
LLM-Tool-Survey - 大型语言模型工具学习调查研究
Github人工智能大语言模型工具学习开源项目综述自然语言处理
该研究系统性调查大型语言模型(LLMs)通过工具学习增强解决复杂问题能力。从工具学习的优势和实现方法两方面全面回顾现有文献,总结基准测试和评估方法,讨论当前挑战和未来方向,为相关研究和开发提供见解。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号