Project Icon

Trace

创新AutoDiff工具助力AI系统端到端训练

Trace是微软开发的创新AutoDiff工具,旨在实现AI系统的端到端训练。该工具通过捕获和传播执行轨迹,扩展了反向传播算法的应用范围。Trace作为Python库,支持直接编写代码并优化特定部分,类似于PyTorch的使用方式。它可处理多种反馈类型,如数值奖励、损失函数、自然语言文本和编译器错误。Trace为AI系统优化提供了灵活且强大的解决方案,适用于各种复杂的AI训练场景。

autotrain-advanced - 机器学习模型的训练与部署的无代码训练
AutoTrainColabGithubHugging Face开源项目机器学习部署
AutoTrain Advanced 是一款无代码解决方案,只需几次点击即可训练机器学习模型。需要上传正确格式的数据以创建项目,关于数据格式和定价的详细信息请查阅文档。AutoTrain 免费使用,只需为使用的资源付费。支持在 Colab 和 Hugging Face Spaces 上运行,也可以通过 PIP 本地安装。适用于 Python 3.10 及以上版本,推荐在 Conda 环境中运行。更多信息请访问项目文档页面。
ktrain - 轻量级的深度学习和AI工具包
GithubTensorFlow Kerasktrain开源项目机器学习深度学习预训练模型
ktrain 是一个基于 TensorFlow Keras 的轻量级深度学习库封装,帮助用户快速构建、训练和部署各种机器学习模型。适用于文本、视觉、图表和表格数据,支持文本分类、图像识别、节点分类和因果推断等任务。无论是初学者还是有经验的研究人员,都能借助其简单的 API 和多种学习率策略,快速实现高效模型部署,支持导出到 ONNX 和 TensorFlow Lite。
gpt-llm-trainer - AI模型训练自动化工具 从任务描述到高性能模型
AI训练GPT-3.5GithubLLaMA 2开源项目数据集生成模型微调
gpt-llm-trainer是一个AI模型训练自动化工具,简化了从任务描述到高性能模型的开发流程。该工具利用Claude 3或GPT-4生成数据集,为LLaMA 2或GPT-3.5模型创建系统提示并进行微调。gpt-llm-trainer通过自动化处理复杂的技术细节,使AI模型开发变得更加简单高效,适合快速开发特定任务AI模型的需求。
detrex - 开源Transformer检测算法工具箱
Detectron2GithubPytorchTransformerdetrexobject detection开源项目
detrex是一个开源工具箱,专为最先进的Transformer检测算法提供支持。该工具箱基于Detectron2构建,并参考了MMDetection和DETR的模块设计。detrex模块化设计,提供强大基线,通过优化超参数将模型性能提升至0.2至1.1AP。该工具箱轻量易用,支持最新算法如Focus-DETR、SQR-DETR、Align-DETR、EVA-01和EVA-02,帮助用户构建定制模型。
FlagAI - 高效易用的大规模AI模型开发工具
FlagAIGithub中文任务多模态大规模模型并行训练开源项目
FlagAI是一款高效易用的大规模AI模型开发工具。它支持Aquila、AltCLIP、GLM等30多种主流模型的快速部署和微调,特别擅长中文自然语言处理任务。FlagAI可用于文本分类、信息抽取、问答、摘要生成等多种应用场景,并提供便捷的少样本学习工具。此外,FlagAI支持简洁的并行训练实现,有助于提高开发效率。
triton - 开源高效深度学习原语编程语言与编译器
GPU编程GithubLLVMTriton开源项目深度学习编译器
Triton是一种开源编程语言和编译器,专为编写高效的自定义深度学习原语而设计。它提供了一个兼具高生产力和灵活性的开发环境,性能优于CUDA,灵活性超过其他领域特定语言。Triton支持NVIDIA和AMD GPU平台,提供完善的文档和教程。用户可通过pip轻松安装,也支持源代码构建。该项目持续更新,最新版本进行了大量性能优化和问题修复。
the-incredible-pytorch - PyTorch资源,包括教程、项目及工具库等
GithubPyTorch开源项目教程机器学习深度学习神经网络
详尽解析PyTorch生态系统!本项目集成了丰富的教程、库和视频资源,全面覆盖从基本知识到先进技术的不同需求。无论涉及数据可视化、对象检测或模型优化,均提供细致入微的资源,帮助各层次开发者提升机器学习实力。
Eco2AI - 量化AI模型训练的碳足迹工具
CO2排放追踪Eco2AIGithub可持续AI开源项目机器学习能源消耗监测
Eco2AI是一个开源的Python库,用于追踪机器学习模型训练过程中的CO2排放。它通过监测CPU和GPU的能耗,结合地区排放系数来估算碳排放量。使用简单,只需在Python脚本中添加几行代码。Eco2AI记录详细的运行信息,包括项目名称、实验描述、耗电量和排放量等。该工具支持装饰器语法,并提供灵活的参数设置。Eco2AI致力于帮助研究人员和开发者量化AI模型训练的环境影响,为推动可持续AI发展提供数据支持。
machinelearning - 跨平台开源框架,简化.NET应用中的模型开发与部署
GithubML.NET开源框架开源项目机器学习模型训练自定义模型
ML.NET是一个跨平台的开源机器学习框架,使开发者无需机器学习经验即可在.NET应用中构建、训练和部署定制模型。它支持从文件和数据库加载数据,并进行数据转换,具备多种机器学习算法。ML.NET适用于分类、预测和异常检测等多种场景,并兼容TensorFlow和ONNX模型,扩展性强。支持Windows、Linux和macOS操作系统,以及ARM64和Apple M1处理器架构。
probability - TensorFlow生态系统中的概率推理与统计分析工具
GithubTensorFlow Probability分布计算开源项目概率推理深度学习统计分析
TensorFlow Probability 是一个概率推理与统计分析库,作为 TensorFlow 生态系统的一部分,结合了概率方法与深度网络。其功能包括自动微分的梯度推断,以及通过 GPU 和分布式计算实现对大规模数据集和模型的可扩展性。主要组件包括概率分布、可逆变换、联合分布、概率层和多种概率推断算法,如马尔可夫链蒙特卡洛和变分推断。提供详细教程和案例,帮助用户解决实际问题。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号