Project Icon

XPretrain

涵盖视频语言和图像语言模型的多模态学习与预训练研究

Microsoft Research MSM组在多模态学习和预训练方法上的最新研究成果,包含用于视频语言的HD-VILA-100M数据集,以及HD-VILA、LF-VILA、CLIP-ViP等预训练模型,和用于图像语言的Pixel-BERT、SOHO、VisualParsing模型。这些研究发表在CVPR、NeurIPS和ICLR等顶级会议,代码和数据集已公开,社区成员可以贡献和提出建议。

VisCPM - 基于CPM-Bee的多模态大模型 对话和图像生成
CPM-BeeGithubVisCPM中英双语多模态大模型开源开源项目
VisCPM是基于CPM-Bee语言模型开发的开源多模态大模型系列,包含VisCPM-Chat和VisCPM-Paint两个模型。VisCPM-Chat支持中英双语多模态对话,VisCPM-Paint实现文到图生成。该项目仅通过英文数据预训练即实现了出色的中文多模态能力,在中文开源多模态模型中表现优异。VisCPM开源供个人和研究使用,旨在促进多模态大模型领域进步。
videollm-online - 流式视频实时理解与交互的先进模型
GithubVideoLLM-online大语言模型实时交互开源项目流媒体视频视频处理
VideoLLM-online是一款针对流媒体视频的在线大语言模型。该模型支持视频流实时交互,可主动更新响应,如记录活动变化和提供实时指导。项目通过创新的数据合成方法将离线注释转化为流式对话数据,并采用并行化推理技术实现高速处理,在A100 GPU上处理速度可达10-15 FPS。VideoLLM-online在在线和离线环境中均表现出色,能高效处理长达10分钟的视频,为视频理解与交互领域带来新的可能性。
NVLM-D-72B - 开源前沿级多模态大语言模型 实现视觉语言任务的最新突破
GithubHuggingfaceNVLM人工智能多模态大语言模型开源项目模型视觉语言
NVLM-D-72B是一款开源的多模态大语言模型,在视觉语言任务上表现卓越,达到了与顶级专有和开源模型相当的水平。该模型不仅擅长视觉语言任务,在多模态训练后其纯文本处理能力也有所提升。NVLM-D-72B可执行光学字符识别、多模态推理、定位、常识推理等多种任务,为AI研究社区提供了强大的开源多模态能力。
internlm-xcomposer2d5-7b - 7B参数规模实现视觉语言理解和创作的开源多模态模型
GithubHuggingfaceInternLM-XComposer-2.5图像理解多模态开源项目模型网页生成长文本处理
InternLM-XComposer2.5采用7B参数规模构建,通过24K交错图文上下文训练,支持扩展至96K长文本理解。这个开源多模态模型在视频理解、多图对话、高清图像分析、网页生成和文章创作等场景中展现出强大的理解与创作能力。其优秀的长文本处理特性使其能够处理需要大量上下文的复杂任务。
LanguageBind_Video_merge - 实现多模态与语言的语义对齐
GithubHuggingfaceLanguageBindVIDAL-10M多模态预训练应急零样本开源项目模型视频语言
LanguageBind项目提出一种基于语言的多模态预训练方法,通过语言对齐视频、红外、深度、音频等多种模态。该方法无需中间模态,性能优异。项目构建了VIDAL-10M数据集,包含1000万条多模态数据及对应语言描述。通过多视角增强和ChatGPT优化的语言描述,为各模态创建了语义空间。该方法在多个数据集上达到了最先进水平。
MiniGPT4-video - 提升视频理解的创新多模态语言模型
GithubGoldfishMiniGPT4-Video多模态开源项目视频理解长视频
MiniGPT4-Video项目采用交错视觉-文本标记技术,大幅提升了多模态大语言模型的视频理解能力。该模型在短视频理解方面表现优异,多项基准测试中均优于现有方法。项目还开发了Goldfish框架,专门应对任意长度视频的处理难题,有效解决了长视频理解中的噪声、冗余和计算挑战。这些创新成果为视频分析和理解领域开辟了新的可能性。
Video-ChatGPT - 创新视频对话技术开启细致视频理解新纪元
GithubVideo-ChatGPT多模态大型视觉语言模型开源项目视频理解问答系统
Video-ChatGPT是一个融合大型视觉和语言模型的视频对话系统。该项目构建了10万条视频-指令对数据集,开发了首个视频对话量化评估框架,在视频推理、创意生成、空间和时间理解等任务中表现出色。这一开源项目为视频内容理解和人机交互带来了新的发展方向。
TinyCLIP-ViT-8M-16-Text-3M-YFCC15M - 高效压缩CLIP模型的跨模态蒸馏方法
CLIPGithubHuggingfaceTinyCLIP图像分类开源项目模型视觉语言预训练跨模态蒸馏
TinyCLIP是一种创新的跨模态蒸馏方法,专门用于压缩大规模语言-图像预训练模型。该方法通过亲和力模仿和权重继承两项核心技术,有效利用大规模模型和预训练数据的优势。TinyCLIP在保持comparable零样本性能的同时,显著减少了模型参数,实现了速度和精度的最佳平衡。这一技术为高效部署CLIP模型提供了实用解决方案,在计算资源受限的场景下尤其有价值。
CogVLM - 开源视觉语言模型,提升图像理解与跨模态对话功能
CogAgentCogVLMGithub图像理解多回合对话开源项目跨模态基准测试
CogVLM和CogAgent是领先的开源视觉语言模型,专注于图像理解和跨模态任务。CogVLM-17B拥有100亿视觉参数和70亿语言参数,并在NoCaps、Flicker30k等十个经典跨模态基准测试上表现出色。CogAgent在CogVLM的基础上改进,增添了GUI图像代理能力,支持1120*1120分辨率的图像理解,并在VQAv2、TextVQA等九个基准测试中表现优秀。该项目提供详细的技术文档、示例代码和Web演示,用户可以方便地进行模型推理和微调。了解更多信息,请访问项目主页。
internlm-xcomposer2d5-7b-4bit - 简化大型语言模型的文本与图像处理新纪元
4位量化模型GithubHuggingfaceInternLM-XComposer开源项目文本图像理解模型视频理解长上下文能力
InternLM-XComposer2.5在文本与图像理解领域展现非凡性能,其应用灵活性媲美GPT-4V,仅靠7B参数即可完成复杂任务。模型通过24K图文上下文训练与96K扩展能力,适用于大量输入输出任务。此外,项目提供了4-bit量化模型来有效降低内存消耗,并支持使用Transformers快速集成,涵盖从视频理解到多图对话的多种应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号