Project Icon

layoutlmv2-large-uncased

提升多模态文档处理能力的先进预训练模型

LayoutLMv2通过整合文本、布局和图像的新预训练任务,增强文档理解能力,广泛应用于FUNSD、CORD等视觉丰富文档项目,提高性能,适合多种下游任务。

markuplm-base - 结合文本与标记语言的文档理解预训练模型
GithubHuggingfaceMarkupLM信息提取多模态预训练开源项目文档AI模型网页问答
MarkupLM是一个文本和标记语言的多模态预训练模型,主要应用于网页问答和信息提取等文档理解任务。通过简单高效的预训练方法,该模型在多个文档理解数据集上取得了领先成果,为文档智能处理提供了新的技术方案。
InternVL2-8B - 多模态大语言模型在图像理解、视频分析和目标定位方面的全面能力
GithubHuggingfaceInternVL2多模态大语言模型开源项目指令微调推理性能模型视觉语言模型
InternVL2-8B是一个基于InternViT-300M-448px和internlm2_5-7b-chat的多模态大语言模型。该模型在文档理解、图表分析和场景文本识别等图像任务中表现优异,同时在视频理解和目标定位方面也展现出强大能力。支持8k上下文窗口,能够处理长文本、多图像和视频输入,在开源多模态模型中具有竞争力。
LVM - 大规模视觉模型的创新顺序建模方法
GithubLVM大规模视觉模型序列建模开源项目视觉句子视觉预训练模型
LVM是一种创新视觉预训练模型,将多种视觉数据转化为视觉句子,并进行自回归式标记预测。该模型采用顺序建模方法,无需语言数据即可学习大规模视觉模型。通过设计视觉提示,LVM可解决多种视觉任务。兼容GPU和TPU,为大规模视觉模型学习提供新方法。
deformable-detr-DocLayNet - Deformable DETR模型实现文档布局分析 基于DocLayNet数据集
Deformable DETRDocLayNetGithubHuggingface图像处理对象检测开源项目文档布局分析模型
这是一个基于Deformable DETR架构的文档布局分析模型,在DocLayNet数据集上训练。该模型可检测和分类11种文档布局元素,在DocLayNet测试集上实现57.1 mAP。它采用transformer编码器-解码器结构,结合CNN主干网络,使用双向匹配损失训练。此模型可用于文档布局分析任务,也可集成到Aryn分区服务等应用中。
lilt-roberta-en-base - 多语言文档理解的语言无关布局变换器
GithubHuggingfaceLiLTRoBERTa布局转换器开源项目文档理解模型模型集成
LiLT-RoBERTa将预训练的RoBERTa模型与轻量级的布局变换器结合,适用于处理多语言的文档图像分类、解析及问答任务,适合在结构化文档理解中应用。用户可在模型库中寻找适合特定任务的微调版本。
VLM2Vec-Full - 视觉语言模型VLM2Vec的多模态嵌入训练方法
GithubHuggingfaceTIGER-LabVLM2Vec多模态嵌入对比学习开源项目模型视觉语言模型
VLM2Vec在Phi-3.5-V模型中引入EOS标记,实现跨多模态输入的统一嵌入表达,高效结合文本与图像。通过对比学习在MMEB-train数据集上训练,并在36个数据集上进行评估,Lora训练方式表现最佳。项目提供模型检查点及完整训练记录,供用户在GitHub仓库克隆下载,通过代码实现文本与图像的嵌入和相似度计算,助力模型运用。
NVLM-D-72B - 开源前沿级多模态大语言模型 实现视觉语言任务的最新突破
GithubHuggingfaceNVLM人工智能多模态大语言模型开源项目模型视觉语言
NVLM-D-72B是一款开源的多模态大语言模型,在视觉语言任务上表现卓越,达到了与顶级专有和开源模型相当的水平。该模型不仅擅长视觉语言任务,在多模态训练后其纯文本处理能力也有所提升。NVLM-D-72B可执行光学字符识别、多模态推理、定位、常识推理等多种任务,为AI研究社区提供了强大的开源多模态能力。
InternVL2-2B - 多模态大语言模型支持多语言及多媒体理解
GithubHuggingfaceInternVL2人工智能多模态大语言模型开源项目模型自然语言处理计算机视觉
InternVL2-2B是一个开源的多模态大语言模型,参数量为2.2B。该模型在文档理解、图表分析和场景文本识别等任务中表现优异,性能接近商业闭源模型。InternVL2-2B支持8K上下文窗口,可处理长文本、多图像和视频输入,大幅提升了多模态理解能力。作为一款出色的开源模型,InternVL2-2B为多模态人工智能研究和应用提供了新的可能性。
InternVL2-40B - 强化跨模态大语言模型的能力
GithubHuggingfaceInternVL场景文本理解多模态开源项目模型视觉理解计算机视觉
InternVL 2.0 通过融合多模态大语言模型,在文件和图表理解、信息图问答、场景文本理解和OCR任务等方面表现出色。它能够利用长文本、多图片和视频进行训练,提升对多种输入的处理效率,并提供1亿到108亿参数的多种模型可选择,与商业模型相当。在多项基准测试中,InternVL 2.0 展示了其卓越的综合理解能力。
InternVL2-1B - 多模态大语言模型实现多图像和视频智能理解
GithubHuggingfaceInternVL2人工智能多模态大语言模型开源项目模型自然语言处理计算机视觉
InternVL2-1B是一款新型多模态大语言模型,结合了InternViT-300M-448px视觉模型和Qwen2-0.5B-Instruct语言模型。该模型在文档理解、图表分析和场景文字识别等任务中表现优异,能有效处理长文本、多图像和视频输入。InternVL2-1B在开源多模态模型中表现突出,部分能力可与商业模型比肩。通过采用8k上下文窗口训练,该模型大幅提升了处理长输入序列的能力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号