Project Icon

GaNDLF

通用深度学习框架支持多种医学影像分析任务

GaNDLF是一个通用深度学习框架,支持多种模型架构、数据维度和医学影像分析任务。框架内置嵌套交叉验证、数据增强和混合精度训练功能,适用于放射学和组织病理学图像处理。GaNDLF简化了深度学习开发流程,提高了模型可重现性和可解释性,使非专业人士也能轻松使用。

Medical-SAM2 - 基于SAM2框架的2D和3D医学图像精准分割模型
GithubMedical SAM 2医学影像图像分割开源项目深度学习计算机视觉
Medical-SAM2是一个开源的医学图像分割模型,基于SAM2框架开发。该模型支持2D和3D医学图像分割,适用于REFUGE眼底图像和BTCV腹部多器官等数据集。项目提供环境配置、数据准备和训练步骤指南,以及预训练权重。Medical-SAM2为医学图像分析研究提供了实用的工具和资源。
OpenGPT - 医疗领域的大型对话模型框架与数据集生成工具
GithubNHS-LLMOpenGPT医疗数据集大语言模型安装指南开源项目
OpenGPT框架助您创建数据集并训练医疗领域的大型对话模型。通过OpenGPT生成的NHS-LLM使用丰富的医疗数据集供下载。提供从数据收集到模型训练的完整教程,并兼容LLaMA模型。详细教程涵盖了使用预设提示词生成任务数据集及调整配置文件进行模型训练的方法。
nnUNet - 自适应医学图像分割深度学习框架
GithubnnU-Net医学影像图像分割开源项目深度学习自动化
nnUNet是一个自适应深度学习框架,专注于医学图像分割。它可自动分析训练数据并优化U-Net分割流程,无需专业知识即可使用。支持2D和3D图像,处理多种模态和输入通道,并能应对不平衡类别分布。在多个生物医学图像分割挑战中表现出色,广泛用作基线方法和开发框架。适用于领域科学家和AI研究人员,为医学图像分析提供强大支持。
MONAI - 基于PyTorch的医疗影像深度学习开源平台
GithubMONAIPyTorch医疗成像开源软件开源项目深度学习框架
MONAI是一个基于PyTorch的开源平台,专注于医疗影像的深度学习。它提供灵活的数据预处理、易于集成的API、领域特定的网络和评估指标,并支持多GPU和多节点数据并行。MONAI旨在为学术、工业和临床研究者提供优化和标准化的模型创建和评估工具,促进跨领域合作。
MedSegDiff - 创新医学图像分割框架
GithubMedSegDiff人工智能医学图像分割开源项目扩散模型深度学习
MedSegDiff是一个创新的医学图像分割框架,基于扩散概率模型(DPM)。该方法通过添加高斯噪声并学习逆向去噪过程来实现分割。利用原始图像作为条件,MedSegDiff从随机噪声生成多个分割图,并进行集成获得最终结果。这种方法能够捕捉医学图像中的不确定性,在多个基准测试中表现优异。MedSegDiff支持多种医学图像分割任务,包括皮肤黑色素瘤和脑肿瘤分割等,并提供详细使用说明和示例。
MedMNIST - 标准化医学图像分类数据集
GithubMedMNIST医学图像分类开源项目数据集机器学习神经网络
MedMNIST是一个标准化的生物医学图像数据集,包含18个2D和3D子集。数据集提供28x28及更大尺寸的图像,涵盖多种医学影像模态,适用于不同的分类任务。总计约708K个2D图像和10K个3D图像,支持生物医学图像分析、计算机视觉和机器学习研究。MedMNIST以其多样性、标准化和易用性,成为评估机器学习算法和开发医学模型的重要资源。
breast_cancer_classifier - 深度学习模型助力乳腺癌筛查增强放射科医师诊断能力
Deep Neural NetworksGithubPyTorchbreast cancermammographyradiologists开源项目
该开源项目提供基于深度学习的预训练模型,能够提升乳腺癌筛查的准确性。项目包含仅图像和图像+热图两种模型,适用于标准视图的乳腺X光检查,支持GPU加速,使用Python和PyTorch实现,提供详细的示例数据和预测结果。
dgl - 图深度学习框架加速图神经网络应用与研究
DGLGithub分布式训练图神经网络大规模图开源项目深度学习
DGL是一个高效易用的Python包,支持在图上执行深度学习。兼容PyTorch、Apache MXNet和TensorFlow等多种框架,提供GPU加速的图库、丰富的GNN模型示例、全面的教学材料及优化的分布式训练功能。适合从研究人员到行业专家的各类用户。广泛应用于学术及实践领域,无论是基础教学还是高级图分析,DGL均能有效支持。
MONAILabel - 智能医学影像标注与AI模型训练开源工具
AI模型GithubMONAI Label交互式标注医学影像标注开源工具开源项目
MONAI Label是一个开源的智能医学影像标注和AI模型训练工具,通过服务器-客户端系统实现AI辅助的交互式医学影像标注。支持放射学、病理学和内窥镜视频等多种医学影像类型,集成了分割、检测等先进深度学习模型。兼容3D Slicer、OHIF等主流医学影像查看器,旨在提高研究人员和临床医生创建标注数据集和训练AI模型的效率。
clinica - 多模态神经影像分析平台 支持临床研究
BIDS标准ClinicaGithub临床神经影像开源项目数据处理管道机器学习
Clinica是一个开源的临床神经影像研究软件平台,支持多模态数据处理。平台提供多种处理流程,用于分析T1加权MRI、弥散MRI和PET数据。它可将公开数据集转换为BIDS格式,并集成机器学习和深度学习技术。Clinica为神经退行性疾病研究提供了有力工具,尤其适用于阿尔茨海默病等领域。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号