Project Icon

DUSt3R_ViTLarge_BaseDecoder_512_dpt

ViT架构的多分辨率3D几何视觉模型用于深度估计

该模型使用ViT-Large编码器和ViT-Base解码器构建,采用DPT结构设计。支持处理512x384至512x160等多种分辨率图像,为3D几何视觉提供简化实现方案。开发者可通过PyTorch快速部署使用,模型由NAVER开源并遵循CC BY-NC-SA 4.0许可协议。

deformable-detr - 使用ResNet-50骨干网络实现的Deformable DETR目标检测模型
COCO 2017Deformable DETRGithubHuggingfaceHungarian算法卷积神经网络开源项目模型物体检测
Deformable DETR模型依托ResNet-50骨干网络,实现了高效的端到端目标检测。通过变形Transformer机制,它能够有效处理并识别图像中的复杂对象。此模型在COCO 2017数据集上经过充分训练,采用目标查询匹配和双重损失优化技术,显著提高了检测精度。适用于高效目标检测场景。
InternViT-300M-448px - 动态分辨率视觉模型提供高效特征提取和OCR功能
GithubHuggingfaceInternViTOCR能力图像嵌入开源项目模型知识蒸馏视觉基础模型
InternViT-300M-448px是一个经过知识蒸馏的视觉基础模型,具有304M参数量和448x448的动态输入分辨率。该模型支持多图块处理,训练时1-12个,测试时可扩展至40个。通过在LAION、COYO等多个数据集上预训练,并整合额外OCR数据,模型展现出优秀的鲁棒性、文字识别和高分辨率处理能力。它可为多种视觉任务提供高质量的图像特征提取。
detr-resnet-50-panoptic - DETR模型:结合ResNet-50的端到端目标检测与全景分割
DETRGithubHuggingfaceTransformer开源项目模型目标检测计算机视觉语义分割
DETR-ResNet-50是一种创新的目标检测模型,融合了Transformer和卷积神经网络技术。该模型在COCO数据集上训练,支持端到端的目标检测和全景分割。通过100个对象查询机制,DETR实现了高效准确的目标识别。在COCO 2017验证集上,模型展现出优秀性能:框AP为38.8,分割AP为31.1,全景质量(PQ)达43.4。这一模型为计算机视觉任务提供了新的解决方案。
dit-base - 面向文档智能处理的自监督预训练图像Transformer模型
DiTGithubHuggingface图像编码开源项目文档分析文档图像转换器模型自监督预训练
DiT-base是一款基于Transformer架构的文档图像处理模型,通过在4200万份文档图像上进行自监督预训练而成。该模型运用掩码补全任务来学习图像的内部表示,可应用于文档分类、表格检测和版面分析等多种任务。DiT-base能够将文档图像编码为向量,为文档智能处理领域的各类应用奠定了基础。
depth-anything-small-hf - 基于大规模无标注数据的先进深度估计模型
Depth AnythingGithubHuggingface图像处理开源项目模型深度估计视觉模型零样本学习
Depth Anything是一款基于DPT架构和DINOv2骨干网络的创新深度估计模型。通过对约6200万张图像的训练,该模型在相对和绝对深度估计领域均实现了突破性成果。它不仅支持零样本深度估计,还能适应多样化的场景图像。研究人员和开发者可以通过简洁的pipeline或灵活的自定义类,轻松实现高精度的图像深度估计。
HunyuanDiT - 实现多分辨率扩散和细粒度中英文理解
GithubHunyuanDiT中英双语多轮对话开源开源项目文本生成图像
HunyuanDiT是一个多分辨率扩散变换器模型,具有细粒度的中英文理解能力。该模型采用优化的变换器结构、文本编码器和位置编码,通过迭代数据流程提升性能。HunyuanDiT支持多轮多模态对话,可根据上下文生成和优化图像。经专业评估,该模型在中文到图像生成方面达到开源模型的先进水平。
dino-vits16 - DINO训练的小型Vision Transformer模型及其应用
DINOGithubHuggingfaceVision Transformer图像处理开源项目模型特征提取自监督学习
dino-vits16是一个基于DINO方法训练的小型Vision Transformer模型。该模型在ImageNet-1k数据集上进行自监督预训练,能够有效学习图像特征表示。它采用16x16像素的图像块作为输入,可应用于多种视觉任务。dino-vits16展示了自监督学习在计算机视觉领域的潜力,为图像分类等下游任务奠定了基础。
vit_small_r26_s32_384.augreg_in21k_ft_in1k - ResNet与Vision Transformer结合的图像分类模型解析
GithubHuggingfaceImageNetViTtimm图像分类增广正则化开源项目模型
该模型结合ResNet与Vision Transformer(ViT)的特点,专用于图像分类。最初在ImageNet-21k上训练,后在ImageNet-1k上微调,并在JAX中创建,由Ross Wightman移植到PyTorch环境中。模型采用了36.5M参数和27.7M激活,针对384x384图像进行了优化,通过增强和正则化技术提升了处理复杂图像任务的能力,适用于多种图像识别应用。
dinov2-large - 基于Vision Transformer的大规模自监督视觉特征学习模型
DINOv2GithubHuggingfaceVision Transformer图像处理开源项目模型特征提取自监督学习
DINOv2-large是基于Vision Transformer架构的大规模视觉模型,采用自监督学习方法训练。该模型能从海量未标注图像中学习视觉特征表示,适用于多种下游视觉任务。它将图像转换为固定大小的patch序列输入Transformer编码器,提取高质量特征。研究人员可直接使用其预训练编码器进行特征提取,或针对特定任务进行微调,体现了模型的通用性和灵活性。
Depth-Anything-V2 - 单目深度估计新突破,高精度与快速推理并重
Depth Anything V2Github开源项目深度估计计算机视觉预训练模型
Depth-Anything-V2是单目深度估计领域的新进展。该模型在细节表现和鲁棒性上显著优于V1版本,并在推理速度、参数量和深度精度方面超越了基于SD的模型。项目提供四种预训练模型,适用于相对和度量深度估计,可处理图像和视频。此外,发布的DA-2K基准为深度估计研究设立了新标准。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号