Project Icon

docs

Neural Magic深度学习模型CPU性能优化平台

Neural Magic开源平台提供了一系列工具,包括SparseML、Sparsify、SparseZoo和DeepSparse,用于优化CPU上的深度学习模型性能。这套软件组件支持选择、构建和运行高效率模型,使开发者能在标准CPU硬件上实现接近GPU级别的AI推理速度。

neural-compressor - 开源深度学习模型压缩工具库
GithubIntel Neural Compressor大语言模型开源项目模型压缩深度学习框架量化
Neural Compressor是一款开源深度学习模型压缩工具库,支持TensorFlow、PyTorch和ONNX Runtime等主流框架。它提供量化、剪枝、知识蒸馏等多种压缩技术,适用于Intel等多种硬件平台。该工具支持大语言模型优化,并与主流云服务和AI生态系统集成。其自动化的精度感知量化策略有助于平衡模型性能和精度。
neural-engine - 如何利用Apple Neural Engine提升机器学习模型的性能以及其局限性的介绍
Core MLGithubNPUNeural Engine开源项目机器学习苹果
本页面全面介绍了如何利用Apple Neural Engine提升机器学习模型的性能,并指出其局限性。探讨NPU的工作原理,解答常见问题,解析部分Core ML模型为何无法充分利用ANE。还提供了具体设备支持列表和编程指南,帮助开发者优化模型,实现iPhone和iPad上的最佳计算性能。
model-optimization - TensorFlow 模型优化工具包, 支持量化和稀疏化
GithubKerasTensorFlow Model Optimization Toolkit剪枝开源项目机器学习模型量化
TensorFlow Model Optimization Toolkit 提供稳定的 Python API,帮助用户通过量化和稀疏化技术优化机器学习模型,包括针对 Keras 的专用 API。该工具包还提供详细的安装指南、教程和 API 文档,显著提升模型在部署和执行时的性能。该项目由 TensorFlow 团队维护,并遵循其行为准则,开发者可以通过 GitHub 提交问题和贡献代码。
sparsegpt - 开源项目实现大型语言模型高效压缩
GithubSparseGPT开源项目模型压缩神经网络剪枝稀疏化语言模型
SparseGPT是一个致力于大型语言模型压缩的开源项目。它提供了一套工具,可在单次操作中对OPT、BLOOM和LLaMA等大规模语言模型进行精确剪枝。该项目支持非结构化、n:m结构化和稀疏量化压缩方法,并包含在WikiText2、PTB和C4子集上评估模型性能的脚本。SparseGPT能有效缩减模型规模的同时保持准确性,为研究人员和开发者提供了探索语言模型压缩的实用工具。
opensearch-neural-sparse-encoding-doc-v1 - OpenSearch神经稀疏编码模型提升信息检索效率
GithubHuggingfaceOpenSearch开源项目搜索引擎文档检索机器学习模型模型神经稀疏编码
opensearch-neural-sparse-encoding-doc-v1是一款为OpenSearch开发的学习型稀疏检索模型。它能将文档转换为30522维稀疏向量,并采用高效的查询处理方法。该模型经MS MARCO数据集训练,实际性能堪比BM25。模型支持基于Lucene倒排索引的学习型稀疏检索,可通过OpenSearch高级API实现索引和搜索。在BEIR基准测试的13个子集上,该模型展现了优秀的零样本性能,体现了出色的搜索相关性和检索效率。
Llama-2-Open-Source-LLM-CPU-Inference - 在CPU上运行量化开源LLM的实用指南
C TransformersCPU推理GGMLGithubLangChainLlama-2开源项目
详细介绍如何在本地CPU上使用Llama 2、C Transformers、GGML和LangChain运行量化开源LLM进行文档问答的指南。内容涵盖工具配置、模型下载和依赖管理,帮助团队实现自我管理或私有部署,满足数据隐私和合规要求,并节省GPU实例的高额费用。
DocsGPT - AI文档搜索工具
AI辅助DocsGPTGPT模型Github开源开源项目文档助手热门
DocsGPT是一款领先的开源解决方案,能够整合强大的GPT模型,帮助开发者快速查询项目文档中的信息。该工具通过简化文档搜索过程,提高信息检索效率,让用户能够轻松获取准确答案,从而节省宝贵的时间。立即尝试DocsGPT,体验AI驱动的文档管理新方式。
ai-reference-models - 提供在Intel硬件上运行的优化深度学习模型资源
GithubIntel AI Reference ModelsIntel Xeon ScalableTransformer优化开源项目深度学习
该存储库含有预训练模型、示例脚本、最佳实践和详细教程,针对优化机器学习模型在Intel® Xeon® 可扩展处理器和Intel® 数据中心GPU上的表现。文档涵盖了使用TensorFlow和PyTorch进行推理与训练的详细步骤,并提供了针对Sapphire Rapids和Intel® Data Center GPU Flex及Max系列的性能优化指南,展示了在最佳硬件配置下的AI性能。
mlc-llm - 通用大语言模型高性能部署引擎
AI模型优化GithubMLC LLMMLCEngine开源项目机器学习编译器高性能部署
MLC LLM是一款用于大语言模型的高性能部署引擎,支持用户在各种平台上开发、优化和部署AI模型。核心组件MLCEngine通过REST服务器、Python、JavaScript、iOS和Android等接口提供OpenAI兼容的API,支持AMD、NVIDIA、Apple和Intel等多种硬件平台。项目持续优化编译器和引擎,与社区共同发展。
bge-large-en-v1.5-quant - 量化ONNX模型增强句子编码效率和性能
DeepSparseGithubHuggingfaceSparsify嵌入开源项目推理模型量化
该量化ONNX模型旨在利用DeepSparse加速bge-large-en-v1.5嵌入模型,提升句子编码效率。通过Sparsify实现的INT8量化和深度稀疏技术,在标准笔记本和AWS实例上分别实现了4.8倍和3.5倍的延迟性能改善。在多个数据集的测试中,该模型在分类和STS任务中展现出较高的编码效率。结合DeepSparse和ONNX技术栈,该模型适用于需要高效自然语言处理的应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号