Project Icon

amd-full-phonetree-v1

提高文本分类效率的少样本学习模型

SetFit模型利用sentence-transformers/paraphrase-mpnet-base-v2进行句子嵌入,通过对比学习优化,实现少样本学习效率。结合LogisticRegression进行文本分类,可处理最长512词元的序列,支持两类分类,适用于需要精确文本分类的场景,可通过SetFit库轻松使用。

fastText - 高效词向量学习和文本分类库
GithubfastText开源项目文本分类机器学习自然语言处理词向量
fastText是Facebook开发的开源自然语言处理库,专注于高效词向量学习和文本分类。它支持157种语言,利用子词信息丰富词向量表示,并采用多种技巧提升分类性能。该库易用且训练速度快,适合大规模文本处理。fastText还提供模型量化功能,可大幅压缩模型体积,便于部署。
multilingual-e5-large-pooled - 多语言支持的句子相似性与特征提取模型
GithubHuggingfaceMTEBmultilingual-e5-large分类句子相似度开源项目模型特征提取
此项目基于多语言处理,融合Sentence Transformers技术,专注于句子相似性与特征提取。支持多语言,适用于分类、重排序、文本聚类等多种场景。模型在各种任务中表现优异,如MTEB AmazonCounterfactualClassification和MTEB BUCC中的分类与双语文本挖掘,表现出色。采用MIT许可证,具有高度使用灵活性。
Pytorch-RNN-text-classification - RNN短文本分类模型 支持多类别高效处理
GithubLSTMPyTorchRNN开源项目短文本分类词嵌入
Pytorch-RNN-text-classification是一个多类别短文本分类模型,基于RNN架构设计。该项目使用Pytorch实现,集成词嵌入、LSTM(或GRU)和全连接层。模型支持GloVe预训练词向量,采用交叉熵损失函数和Adam优化器。通过零填充和PackedSequence技术处理mini-batch,提高训练效率。项目包含数据预处理和训练脚本,方便研究人员快速应用于实际文本分类任务。
bge-small-en-v1.5 - 轻量级高性能英语句子嵌入模型
GithubHuggingfacesentence-transformers开源项目文本分类模型聚类自然语言处理语义相似度
BGE-small-en-v1.5是一款轻量级英语句子嵌入模型,在文本分类、检索、聚类和语义相似度等多项NLP任务中表现出色。该模型在MTEB基准测试中展现了优异性能,同时保持了较小的模型规模,适合需要高效句子向量化的应用场景。模型在MTEB评估中的多项任务上表现突出,包括亚马逊评论分类、ArguAna论点检索和BIOSSES生物医学语义相似度等,为各类NLP应用提供了高效的句子向量化解决方案。
bge-base-en-v1.5 - 增强文本处理能力的多任务学习模型
GithubHuggingfacesentence-transformers分类句子相似性句子聚类开源项目模型特征提取
bge-base-en-v1.5模型通过多任务学习优化自然语言处理技术,覆盖分类、检索、聚类和重排任务。在多个MTEB数据集上表现优异,例如在亚马逊情感分类任务中达到93.39%的准确率,在AskUbuntu重排任务中MRR达到74.28%。该模型具有MIT开源许可,适用于多种英语任务,为研究人员和开发者提供有效支持。
s2t-small-librispeech-asr - 小型LibriSpeech语音识别模型的高效自动化
GithubHuggingfaceLibriSpeechSpeech2Texts2t-small-librispeech-asr开源项目模型自动语音识别语音转换文本
s2t-small-librispeech-asr是一种小型端到端语音识别模型,使用LibriSpeech ASR语料库进行训练。该模型采用自回归的方式生成转录文本,并结合Pytorch及其工具如torchaudio和sentencepiece以提高准确性。在LibriSpeech“clean”和“other”测试集上的WER分别为4.3和9.0,可满足高性能语音识别应用的需求。
efficientnet-b0 - EfficientNet的复合系数法在资源有限设备上提升图像分类效果
EfficientNetGithubHuggingfaceImageNet卷积神经网络图像分类开源项目模型模型缩放
EfficientNet是一种训练于ImageNet-1k数据集、分辨率为224x224的卷积模型。该模型提出了复合系数方法,以均衡缩放模型的深度、宽度和分辨率。在移动设备上表现卓越,适用于图像分类。同时,用户可在Hugging Face平台上获取特定任务的微调版本。
classifier-multi-label - 基于BERT的多标签文本分类算法实现
BERTGithubSeq2SeqTextCNNtf.nn.softmax_cross_entropy_with_logits多标签分类开源项目
本项目介绍了如何使用BERT结合TextCNN、Denses、Seq2Seq等多种算法实现多标签文本分类。涵盖了模型结构、损失函数和解码方法等细节,展示了不同方法在推理速度和分类效果上的表现,提供了实验数据和结论,帮助开发者选择最佳解决方案。
roberta-base-zeroshot-v2.0-c - 商用优化的零样本文本分类工具
GithubHugging FaceHuggingfacezeroshot分类商业友好数据开源项目模型模型训练自然语言推理
该系列模型专为Hugging Face平台优化,支持在GPU和CPU上进行零样本分类,无需预先训练数据。最近的改进包括基于商业友好的数据集训练,能满足严苛的许可条件。roberta和deberta系列以合理的准确性和速度满足不同需求,可用于多种语言和大范围文本输入,非常适合全球多样化的应用场景。最新的模型更新可在Zeroshot Classifier Collection中查阅,确保多种使用环境下的合规性。
paraphrase-multilingual-mpnet-base-v2 - 跨语言句子向量化模型支持聚类和语义检索
GithubHuggingfacesentence-transformers多语言模型开源项目文本嵌入模型自然语言处理语义搜索
paraphrase-multilingual-mpnet-base-v2是一个基于sentence-transformers的多语言句子嵌入模型,支持50多种语言。它将句子和段落映射为768维向量,适用于聚类和语义搜索。模型易于使用,通过pip安装即可快速集成。在Sentence Embeddings Benchmark上表现出色,采用XLMRobertaModel和平均池化层结构,可有效处理不同长度的文本输入。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号