Project Icon

CLIP

CLIP是一种在各种(图像、文本)对上训练的神经网络

CLIP通过对比学习训练神经网络,结合图像和文本,实现自然语言指令预测。其在ImageNet零样本测试中的表现与ResNet50相当,无需使用原始标注数据。安装便捷,支持多种API,适用于零样本预测和线性探针评估,推动计算机视觉领域发展。

CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg - 基于LAION-2B数据集的卷积神经网络达到79%零样本分类准确率
CLIPConvNextGithubHuggingface图像分类开源项目机器学习模型神经网络
CLIP ConvNeXt-XXLarge是一个在LAION-2B数据集上训练的大规模视觉语言模型,总参数量12亿,图像分辨率256x256。模型采用ConvNeXt-XXLarge图像结构和ViT-H-14规模的文本编码器,在ImageNet零样本分类上达到79%准确率。主要应用于图像分类、检索等研究任务。
MobileCLIP-S2-OpenCLIP - 高效图像-文本模型通过多模态强化训练实现性能突破
GithubHuggingfaceMobileCLIPOpenCLIP图像文本模型多模态强化训练开源项目模型零样本图像分类
MobileCLIP-S2-OpenCLIP是一款基于多模态强化训练的高效图像-文本模型。相比SigLIP的ViT-B/16模型,它在性能上有所超越,同时速度提升2.3倍,模型体积缩小2.1倍,且仅使用了1/3的训练样本。在ImageNet零样本分类任务中,该模型达到74.4%的Top-1准确率,在38个数据集上的平均性能为63.7%,体现了出色的效率与性能平衡。
clip-vit-base-patch16 - OpenAI开发的CLIP模型实现零样本图像分类和跨模态理解
CLIPGithubHuggingface人工智能图像分类开源项目模型计算机视觉零样本学习
CLIP是OpenAI开发的视觉语言模型,结合ViT-B/16和masked self-attention Transformer架构。通过对比学习,实现零样本图像分类和跨模态理解。在多项计算机视觉基准测试中表现优异,但在细粒度分类和对象计数方面存在局限。该模型主要用于研究计算机视觉任务的鲁棒性和泛化能力,不适用于商业部署。
metaclip-b32-400m - 揭秘CLIP数据处理方法的高性能视觉语言模型
GithubHuggingfaceMetaCLIP图像文本匹配开源项目模型自然语言处理计算机视觉零样本图像分类
MetaCLIP-b32-400m是基于CommonCrawl数据集训练的视觉语言模型,旨在解析CLIP的数据准备方法。该模型构建了图像和文本的共享嵌入空间,支持零样本图像分类和基于文本的图像检索等功能。研究人员可通过此模型探究CLIP的数据处理流程,加深对视觉语言模型训练过程的理解。
CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft-soup - ConvNeXt-Large CLIP模型提升零样本图像分类性能
CLIPConvNeXtGithubHuggingface图像分类开源项目机器学习模型零样本学习
本模型基于LAION-2B数据集训练,采用320x320分辨率的ConvNeXt-Large架构和权重平均技术。在ImageNet-1k零样本分类任务上,准确率达到76.9%,超越了256x256分辨率版本。模型效率高于OpenAI的L/14-336,可应用于零样本图像分类、图文检索等任务。该项目为研究人员提供了强大的视觉-语言表征工具,助力探索大规模多模态模型。
vit_base_patch16_clip_224.openai - CLIP:跨模态视觉语言理解模型
CLIPGithubHuggingface人工智能图像分类开源项目模型计算机视觉零样本学习
CLIP是OpenAI开发的视觉-语言预训练模型,在timm库中实现。它使用ViT-B/16 Transformer作为图像编码器,masked self-attention Transformer作为文本编码器,通过对比学习优化图像-文本对相似度。CLIP在零样本图像分类任务中展现出优秀的鲁棒性和泛化能力,但在细粒度分类和物体计数方面仍有局限。该模型主要面向AI研究人员,用于探索计算机视觉模型的能力和局限性。
StreetCLIP - 开域图像地理定位的高性能零样本学习模型
GithubHuggingfaceOpenAIStreetCLIP图像地理定位城市场景开源项目模型零样本学习
StreetCLIP是一个在开域图像地理定位中实现零样本学习的预训练模型,基于OpenAI的CLIP ViT,通过1.1百万街景图像进行训练,与传统监督模型相比具有更优性能,适用于城市和乡村环境。该模型能够将图像特征与特定地理位置关联,可应用于建筑分析、自然环境监测、基础设施检查等多种领域,并有助于导航和自动驾驶技术的改进。
plip - 基于CLIP模型的Python图像处理库 专注零样本分类研究
CLIPGithubHuggingface人工智能图像分类开源项目数据隐私模型模型研究
plip是一个基于OpenAI CLIP模型的Python图像处理库,专注于零样本图像分类研究。该工具为AI研究人员提供了探索模型鲁棒性和泛化性的平台。目前仅支持英语环境,主要用于研究目的。使用时需注意在特定分类体系下进行充分的领域测试,不建议直接部署到生产环境。
TinyCLIP-ViT-8M-16-Text-3M-YFCC15M - 高效压缩CLIP模型的跨模态蒸馏方法
CLIPGithubHuggingfaceTinyCLIP图像分类开源项目模型视觉语言预训练跨模态蒸馏
TinyCLIP是一种创新的跨模态蒸馏方法,专门用于压缩大规模语言-图像预训练模型。该方法通过亲和力模仿和权重继承两项核心技术,有效利用大规模模型和预训练数据的优势。TinyCLIP在保持comparable零样本性能的同时,显著减少了模型参数,实现了速度和精度的最佳平衡。这一技术为高效部署CLIP模型提供了实用解决方案,在计算资源受限的场景下尤其有价值。
clip-interrogator - 一种提示工程工具
CLIP InterrogatorGithubOpenAIStable Diffusion人工智能图像生成开源项目
CLIP Interrogator结合了OpenAI的CLIP和Salesforce的BLIP,优化生成与给定图像相匹配的文本提示。支持Stable Diffusion和DreamStudio等文本到图像模型。现已作为Stable Diffusion Web UI扩展供使用,并支持在Colab、HuggingFace和Replicate上运行。用户可通过Python虚拟环境安装,并根据系统VRAM配置自定义优化。提供多种预训练CLIP模型供选择,满足不同需求。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号