Project Icon

DI-1024

将1024游戏与深度强化学习相结合的开源项目

DI-1024是一个将深度强化学习技术应用于1024(又称2048)数字游戏的开源项目。它提供在线试玩体验和完整的强化学习训练示例,采用MuZero和StochasticMuZero等算法来开发高水平的游戏AI。该项目为研究人员和游戏爱好者创造了一个探索人机交互的平台,展示了AI在策略游戏中的应用。

DouZero - 利用自我对弈深度强化学习技术掌握斗地主游戏
DouDizhuDouZeroGithub开源项目快手斗地主深度强化学习热门
DouZero是一个基于自我对弈的深度强化学习框架,专注于中国最流行的纸牌游戏斗地主。该项目由快手AI平台开发,通过深度神经网络、动作编码和并行执行者的结合,实现了在斗地主这一具有高度竞争与合作、信息不完全、状态空间巨大以及复杂动作空间的游戏领域中的显著进步。DouZero不仅在轻松应对大量可能动作方面取得了突破,而且在全球范围内的多个AI竞赛中名列前茅。项目代码已在GitHub公开,以期为未来的研究提供动力和启示。
alpha-zero-general - 通用自学强化学习平台,支持多种游戏和深度学习框架
Alpha ZeroGithubOthello开源项目强化学习深度学习蒙特卡洛树搜索
该项目基于AlphaGo Zero论文,提供了简化和灵活的自学强化学习实现,适用于各种双人回合制对抗游戏和深度学习框架。用户可通过实现Game.py和NeuralNet.py中的类,为所选游戏自定义实现。项目提供了Othello、五子棋和井字棋等游戏示例,支持PyTorch和Keras框架,并包含核心训练循环、蒙特卡洛树搜索和神经网络参数设置的详细说明,此外还提供预训练模型和Docker环境设置。
AlphaZero_Gomoku - AlphaZero算法在五子棋游戏中的应用
AI模型AlphaZeroGithubGomoku开源项目自我对弈训练
AlphaZero-Gomoku项目通过自我对弈训练,实现了五子棋(Gomoku)的AI开发。该项目专注于展示AlphaZero算法在相对简单的棋类游戏中的表现,可在数小时内使用单台PC训练出高水平AI模型。支持TensorFlow和PyTorch进行训练,提供实例游戏和操作指南,适合学习AI自我对弈算法和深度学习框架的开发者。
LightZero - 整合MCTS与深度强化学习的轻量级算法工具包
GithubLightZeroMCTS开源工具包开源项目强化学习算法基准测试
LightZero是一个开源算法工具包,整合了蒙特卡洛树搜索(MCTS)和深度强化学习(RL)。它支持AlphaZero、MuZero等多种基于MCTS的RL算法,提供详细文档和性能对比。该项目致力于标准化MCTS+RL算法,以促进相关研究和应用。LightZero的轻量级设计和易用性,有助于用户理解算法核心并进行算法间比较。
tinyzero - 简易强化学习框架 快速训练类AlphaZero智能体
AlphaZeroGithub开源项目强化学习环境模拟神经网络蒙特卡洛树搜索
tinyzero是一个简易的强化学习框架,用于在任意环境中训练类AlphaZero的智能体。该框架提供简单接口实现新环境、模型和智能体,支持多种游戏类型。tinyzero采用Monte Carlo树搜索和深度学习技术,可在Google Colab上快速部署,适合研究人员和爱好者探索AI在各类任务中的应用。
gobang - 基于极小化极大算法和Alpha Zero的五子棋AI
Alpha ZeroGithubReact V18Tensorflow2.x五子棋AI开源项目极小化极大算法
本项目实现了一个基于极小化极大算法和Alpha Zero原理的五子棋AI。2023年11月重写了代码,使其更加简洁并修复了AI下棋错误。项目提供了详细的中文教程,帮助用户从零开始编写五子棋AI,并支持React V18版本。适合对机器学习和神经网络感兴趣的开发者进行研究和交流。
DeepLearningFlappyBird - 使用深度Q网络训练AI玩Flappy Bird游戏
Deep Q-NetworkFlappy BirdGithubPython卷积神经网络开源项目深度强化学习
该项目演示了如何使用深度Q学习算法在Flappy Bird游戏中进行应用。项目利用Python、TensorFlow和OpenCV等技术,详细讲解了如何通过卷积神经网络处理游戏画面并优化游戏策略,使AI智能体可以自学并在游戏中取得高分。内容包括游戏画面的预处理、网络结构的设计、训练过程的参数调整以及常见问题的解决方案。此项目适合对深度强化学习有兴趣的开发者和研究人员参考。
drl-zh - 深度强化学习入门,从零开始实现经典算法
Atari游戏DQNDeep Reinforcement LearningGithubPPOSAC开源项目
本课程提供深度强化学习的基础和经典算法的实用入门指导。学习者将从零开始编写DQN、SAC、PPO等算法,并掌握相关理论。课程内容还包括训练AI玩Atari游戏及模拟登月任务。同时详细介绍环境设置和代码实现步骤,支持Visual Studio Code和Jupyter Notebook,确保学习过程流畅高效。
gym-sokoban - 推箱子游戏的深度强化学习挑战
AI游戏DeepMindGithubgym-sokoban开源项目强化学习推箱子
该项目实现了经典视频游戏推箱子,旨在为深度强化学习算法提供训练环境。游戏中的房间生成是随机的,有助于避免神经网络过拟合预定义场景。玩家需要将所有箱子推到目标位置,不可逆的错误增加了游戏的挑战性。项目支持多种渲染模式和尺寸配置,适用于不同研究和训练需求。可通过PIP或从仓库安装,并提供多种游戏变体,如固定目标、多玩家和箱子拉动功能。
AI-Optimizer - 涵盖从无模型到基于模型,从单智能体到多智能体的多种算法的多功能深度强化学习平台
AI-OptimizerGithub多智能体强化学习开源项目深度强化学习离线强化学习自监督学习
AI-Optimizer是一款多功能深度强化学习平台,涵盖从无模型到基于模型,从单智能体到多智能体的多种算法。其分布式训练框架高效便捷,支持多智能体强化学习、离线强化学习、迁移和多任务强化学习、自监督表示学习等,解决维度诅咒、非平稳性和探索-利用平衡等难题,广泛应用于无人机、围棋、扑克、机器人控制和自动驾驶等领域。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号