Project Icon

torchtyping

张量类型注解工具,支持形状和数据类型检查

一种适用于PyTorch的工具,用于对张量的形状和数据类型进行类型注解,通过编程检查确保张量规范,减少错误。支持多种注解,具有高度的可扩展性,包括形状、数据类型和维度名称。与typeguard集成,可进行运行时类型检查,提升代码的可读性和健壮性。

toolformer-pytorch - 语言模型自主学习工具使用,提高API调用效率
API调用GithubMetaAIPytorchStability.aiToolformer开源项目
Toolformer-Pytorch是由MetaAI开发的开源项目,旨在使语言模型能够自主调用API工具来完成任务。得益于Stability.ai的支持和开源社区的贡献,该项目显著提升了语言模型对工具的理解和使用能力。无论是时间查询还是简单的数学运算,Toolformer都表现出色,同时通过优化和微调,降低了文本困惑度。安装简单,适用于各种Python环境。
torchgeo - 优化地理空间数据处理的机器学习与遥感工具
GithubPyTorchTorchGeo地理空间数据开源项目机器学习遥感
TorchGeo 是一个基于 PyTorch 的地理空间数据处理库,提供丰富的数据集、采样器、变换和预训练模型,旨在帮助机器学习和遥感专家更高效地处理和探索地理空间数据。该库支持多光谱传感器的预训练模型,并与 PyTorch 数据加载器完全兼容,易于集成到现有的训练工作流中。其全面的文档包括 API 使用指南、教程和示范,非常适合开发者和研究人员使用。
HolisticTraceAnalysis - 高效分析分布式训练性能瓶颈的开源工具
GPUGithubHolisticTraceAnalysisPyTorch分布式训练开源项目性能分析
HolisticTraceAnalysis是一款开源性能分析工具,用于识别分布式训练中的性能瓶颈。它分析PyTorch Profiler收集的跟踪数据,提供时间分解、内核分析、通信计算重叠等功能。支持Linux和Mac系统,适用于Python 3.8及以上版本。开发者可通过该工具深入分析和优化分布式训练性能。
tch-rs - Rust语言的PyTorch C++ API接口
GithubPyTorchRustlibtorchnn::Moduletch-rs开源项目
tch-rs是Rust语言对PyTorch C++ API的绑定,通过简洁的封装实现高效的深度学习模型训练和推理。支持系统全局libtorch安装、手动安装和Python PyTorch安装,兼容CUDA并支持静态链接。提供详细的安装说明和丰富的示例代码,包括基础张量操作、梯度下降训练、神经网络构建和迁移学习等,适合不同水平的开发者。
typedb-ml - 提高TypeDB数据处理的图算法和机器学习工具
GithubGraph Neural NetworksNetworkXPyTorch GeometricTypeDBTypeDB-ML开源项目
TypeDB-ML 提供了一套实现图算法和机器学习的工具,兼容 NetworkX 和 PyTorch Geometric,可以对 TypeDB 数据进行查询、构建和处理,支持图神经网络的构建和预测。用户可以轻松安装这些工具,并可通过 TypeDB-ML Discord 频道或 Vaticle 讨论论坛获取更多支持和最新资讯。
facetorch - Python库支持深度学习的面部检测和分析,同时加速CPU和GPU性能
GithubPython库TorchScriptfacetorch开源项目深度学习面部分析
Facetorch是一个Python库,使用深度神经网络进行面部检测和特征分析。它支持Hydra配置,使用conda-lock和Docker进行环境重现,并通过TorchScript加速CPU和GPU性能。该工具可扩展,允许通过Google Drive上传模型文件和添加配置文件。请谨慎使用,并遵循欧盟可信AI伦理指南。
Awesome-PyTorch-Chinese - PyTorch资源,教程、视频、实战项目和书籍推荐
GithubPyTorch书籍实战开源项目教程视频
详细介绍PyTorch资源,包括官方文档、教程、视频课程、NLP与CV实战项目及相关书籍,帮助各层次用户深入掌握PyTorch。
tensorwatch - 数据科学和机器学习的实时可视化与调试工具
GithubJupyter NotebookMicrosoftTensorWatch开源项目数据可视化机器学习
TensorWatch是由微软研究院开发的调试和可视化工具,专为数据科学、深度学习和强化学习设计。它运行在Jupyter Notebook中,提供实时的机器学习训练可视化和分析功能。其灵活的架构允许创建自定义的可视化、界面和仪表板,并支持独特的Lazy Logging模式进行实时查询和流式数据处理。TensorWatch支持多种图表类型和并行流可视化,是一个易于使用且可扩展的调试平台。
how-to-read-pytorch - 通俗易懂的PyTorch核心概念教程 从张量运算到数据加载的全面指南
GPU计算GithubPyTorch开源项目深度学习神经网络自动求导
该项目是一个PyTorch核心概念教程系列,包含5个Jupyter notebook。教程内容涵盖张量运算、自动求导、优化器、网络模块和数据加载等PyTorch关键主题。每个主题提供详细说明和可运行示例代码,旨在帮助开发者理解PyTorch的运行模型和高效GPU编程。所有notebook支持在Google Colab上免费运行,便于实践学习。
pytorch-lightning - 深度学习框架的全方位AI模型训练与部署解决方案
AI模型训练GithubLightning FabricPyTorch Lightning开源项目模型部署深度学习热门
深度学习框架Pytorch-Lightning 2.0版本现已推出,提供清晰稳定的API,支持AI模型的预训练、微调和部署。该框架轻松实现Pytorch代码组织,将科学研究与工程实现分离,帮助研究人员和工程师高效进行模型训练与部署。通过提供各种训练和部署选项以及兼容多种硬件和加速器,Pytorch-Lightning兼顾模型的灵活性和可扩展性,适应从初学者到专业AI研究的不同需求。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号