Project Icon

cnn-explainer

互动可视化工具,帮助用户理解卷积神经网络

CNN Explainer 是一个用于学习卷积神经网络的互动可视化工具,提供实时演示和本地运行功能。用户可以克隆代码库并在本地环境中运行,支持自定义模型和图像类别。该工具由乔治亚理工学院与俄勒冈州立大学合作开发。

SAELens - 训练和分析稀疏自编码器的开源工具
GithubSAE Lens人工智能安全开源项目机械可解释性神经网络稀疏自编码器
SAELens是一个开源工具库,专注于稀疏自编码器的训练和分析。它为研究人员提供预训练模型加载、自定义训练和可视化分析功能,支持深入探索神经网络内部机制。该项目由多位贡献者维护,旨在促进机械解释性研究和人工智能安全发展。
interpret-community - 强化可解释AI的开源工具库
GithubInterpret-CommunitySHAP可解释性开源项目机器学习模型解释
Interpret-Community是扩展Interpret库的开源项目,为表格数据模型提供增强的可解释性技术。它集成了SHAP、LIME等多种解释器,适用于各类机器学习模型。项目还包含交互式可视化工具,便于分析数据与模型。该项目优化了可解释性技术,使其能够处理实际数据集和工作流程,致力于增强机器学习模型的可解释性和透明度。
computer-vision-in-action - 计算机视觉实战指南:涵盖基础理论及前沿技术
CharmveGithubL0CVMaiwei AI Lab开源项目机器学习计算机视觉
本项目提供全面且前沿的计算机视觉学习资源,涵盖深度学习基础、神经网络模型及其优化方法。核心内容包括卷积神经网络、循环神经网络以及现代技术如Transformer、强化学习和迁移学习。通过实战项目和详细的代码实现,用户可以学习图像分类、目标检测、语义分割和3D重建等应用。此外,项目提供在线运行的notebook,简化本地调试过程。
csinva.github.io - 机器学习与神经科学的互动演示和详尽笔记资源
Githubcsinva因果推断开源项目机器学习研究笔记神经科学
提供机器学习、统计学及神经科学的全面笔记、演示文稿和研究概述,涵盖可解释性、因果推断、迁移学习和不确定性等主题。用户可以访问实用的备忘单和课程笔记,了解最新的研究进展。资源来源包括Chandan在UC Berkeley读博期间积累的丰富资料,适用于相关领域的研究和教学人员。
easy-tensorflow - TensorFlow教程与简化代码示例
Easy-TensorFlowGithubPythonTensorFlow开源项目教程深度学习
Easy-TensorFlow提供详尽的教程和简化的代码实现,旨在简化学习路径。项目涵盖从基础到高级的教程,每个步骤都有全面解释和源代码示例。它强调低层和高层网络训练接口、Tensorboard可视化工具、多GPU支持等特性。无论是新手还是有经验的开发者,都可以通过这些教程更加高效地掌握TensorFlow。
CV - 全面的计算机视觉深度学习模型集合
Github图像分类开源项目深度学习目标检测计算机视觉语义分割
这个项目收集了多个计算机视觉领域的深度学习模型,包括图像分类、目标检测、语义分割和生成模型。项目为每个模型提供论文链接、详细解析和代码实现,涵盖从AlexNet到YOLO系列等经典算法。这是一个面向研究人员和开发者的综合性学习资源,有助于理解和应用先进的计算机视觉技术。
the-incredible-pytorch - PyTorch资源,包括教程、项目及工具库等
GithubPyTorch开源项目教程机器学习深度学习神经网络
详尽解析PyTorch生态系统!本项目集成了丰富的教程、库和视频资源,全面覆盖从基本知识到先进技术的不同需求。无论涉及数据可视化、对象检测或模型优化,均提供细致入微的资源,帮助各层次开发者提升机器学习实力。
ScreenAI - 深度理解界面和信息图的视觉语言模型
GithubScreenAIUI理解信息图表理解多模态开源项目视觉语言模型
ScreenAI是一个开源的多模态视觉语言模型,专注于用户界面(UI)和信息图的理解。该模型集成了视觉变换器(ViT)、注意力机制和前馈网络,能够处理图像和文本输入。通过深度学习技术,ScreenAI实现了对复杂视觉信息的处理和文本整合分析,为UI设计、信息可视化和人机交互研究提供了新的工具和方法。
cv_note - 分享计算机视觉和模型压缩部署技术栈笔记
CVGithub开源项目机器学习深度学习算法工程师计算机视觉
这个开源项目详细记录了计算机视觉算法工程师的成长路径,从基础编程知识到深度学习,再到模型部署。项目还提供了算法实习内推表、校招可投递公司汇总及技术栈笔记等实用资源,涵盖了编程开发、机器学习、图像识别、模型压缩等关键技术点,适合希望系统提升技术水平的工程师。
DeepLearningProject - 全面教程涵盖数据集创建与深度学习
GithubHarvard UniversityPyTorchPython开源项目机器学习深度学习
本教程详细介绍了从创建自定义数据集到应用传统和深度学习算法的完整机器学习管道。基于哈佛大学高级数据科学课程项目,内容更新为PyTorch版本,适合希望深入理解和实践机器学习的用户。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号