Project Icon

traceml

机器学习数据追踪与可视化工具,支持多种深度学习框架

TraceML 是一款强大的工具,用于机器学习和数据的追踪、可视化、解释和漂移检测。它与 Keras、PyTorch、TensorFlow、Fastai、Pytorch Lightning 和 HuggingFace 等多种深度学习和机器学习框架集成,方便用户记录和跟踪实验数据。TraceML 支持离线模式、多种数据可视化接口,并能生成详细的数据框架总结。

项目简介:TraceML

TraceML 是一个用于机器学习和数据追踪的引擎,主要致力于数据可视化、解释性分析、漂移检测,以及特定仪表盘的构建。它特别适用于 Polyaxon 这种环境中,有效管理和优化机器学习项目。

安装指南

安装 TraceML 非常简单,只需使用 pip 命令即可:

pip install traceml

如果你计划使用追踪功能,还需同时安装 polyaxon

pip install polyaxon traceml

本地沙盒模式

本地沙盒模式即将推出,敬请期待。

离线使用

TraceML 支持离线模式,这使得用户可以无需 API 也能进行数据追踪。只需在环境变量中设置:

export POLYAXON_OFFLINE="true"

或者在代码中传递离线标志:

from traceml import tracking

tracking.init(..., is_offline=True, ...)

Python 脚本中的简单使用示例

TraceML 提供了一种简便的方法来追踪和记录实验数据。以下是一个使用 TraceML 进行数据追踪的简单 Python 脚本示例:

import random
import traceml as tracking

tracking.init(
    is_offline=True,
    project='quick-start',
    name="my-new-run",
    description="trying TraceML",
    tags=["examples"],
    artifacts_path="path/to/artifacts/repo"
)

tracking.log_data_ref(content=X_train, name='x_train')
tracking.log_data_ref(content=y_train, name='y_train')

tracking.log_inputs(
    batch_size=64,
    dropout=0.2,
    learning_rate=0.001,
    optimizer="Adam"
)

def get_loss(step):
    result = 10 / (step + 1)
    noise = (random.random() - 0.5) * 0.5 * result
    return result + noise

for step in range(100):
    loss = get_loss(step)
    tracking.log_metrics(
    loss=loss,
    accuracy=(100 - loss) / 100.0,
)

tracking.log_outputs(validation_score=0.66)
tracking.stop()

与深度学习和机器学习库的集成

TraceML 可以与多种深度学习和机器学习库及框架无缝集成,包括但不限于 Keras、PyTorch、Tensorflow、Fastai、Pytorch Lightning 和 HuggingFace。这些集成都通过简单的配置和回调功能,帮助用户自动化追踪实验的各项指标、输出和模型。

例如,Keras 用户可以通过下述代码进行自动指标保存:

from traceml import tracking
from traceml.integrations.keras import Callback

tracking.init(
    is_offline=True,
    project='tracking-project',
    name="keras-run",
    description="trying TraceML & Keras",
    tags=["examples"],
    artifacts_path="path/to/artifacts/repo"
)

model.fit(
    x_train,
    y_train,
    validation_data=(X_test, y_test),
    epochs=epochs,
    batch_size=100,
    callbacks=[Callback()],
)

对于其他库的使用,相关用法类似。用户只需按照TraceML提供的 API 来配置即可。

追踪工件

TraceML 还支持对多种可视化工具制作的图表和工件进行追踪,包括 Matplotlib、Bokeh、Altair 和 Plotly。用户可以追踪和管理这些图表的生成和保存。

数据帧追踪

TraceML 提供的数据帧追踪工具,可以对 Pandas 数据帧进行详细的统计分析。通过 DataFrameSummary 对 Pandas 数据帧的描述功能进行扩展,用户可以获取列统计、列类型以及单个列的详细信息。

from traceml.summary.df import DataFrameSummary

dfs = DataFrameSummary(df)

小结

TraceML 是一个功能强大的工具,适用于追踪和管理机器学习项目中的各种数据。无论你是想详细分析数据帧,还是关联和比较不同的模型与结果,TraceML 都提供了简便且高效的解决方案。它与主流深度学习和机器学习框架的集成,进一步增强了其在复杂项目中的实用性。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

问小白

问小白是一个基于 DeepSeek R1 模型的智能对话平台,专为用户提供高效、贴心的对话体验。实时在线,支持深度思考和联网搜索。免费不限次数,帮用户写作、创作、分析和规划,各种任务随时完成!

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号