Project Icon

wav2lip_288x288

改进版Wav2Lip 高分辨率唇形同步与先进算法集成

wav2lip_288x288是Wav2Lip项目的改进版本,致力于提升唇形同步的质量和分辨率。该项目支持288x288至512x512的模型尺寸,整合了PRelu、LeakyRelu等先进技术,并采用SAM-UNet架构。项目提供详细的训练流程,包括Syncnet和wav2lip-Sam的训练步骤。目前正在开发基于DINet的全流程训练功能,涵盖使用DeepSpeech的Syncnet训练和DINet帧训练。这些优化旨在实现更精确、更高质量的唇形同步效果。

wav2vec2-large-danish-npsc-nst - 基于XLS-R微调的高性能丹麦语语音识别模型
GithubHuggingfacewav2vec2丹麦语开源项目模型深度学习自然语言处理语音识别模型
wav2vec2-large-danish-npsc-nst是一个针对丹麦语语音识别优化的模型,基于chcaa/xls-r-300m-danish进行微调。经过15轮训练,模型在评估集上表现出色,损失降至0.0587,词错误率仅为6.69%。采用Adam优化器、线性学习率调度和混合精度训练等先进技术,显著提升了模型性能。
FCH-TTS - 并行语音合成模型
GithubParallelTTS合成样例声码器开源项目语音合成预训练模型
FCH-TTS采用先进的并行语音合成技术,快速生成高质量语音。支持多语种及多种声音风格,满足多样化应用需求。项目持续迭代,引入诸如SoftDTW损失函数等新功能和优化,同时集成顶尖的声码器技术。FCH-TTS不仅提供预训练模型和丰富的合成示例,还允许用户自定义训练和合成,适用于教育、娱乐及商业多个领域。
wav2vec2-base-superb-er - 基于Wav2Vec2的语音情感识别模型实现高精度声学特征提取
GithubHuggingfaceIEMOCAPSUPERBWav2Vec2开源项目情感识别模型语音识别
wav2vec2-base-superb-er是一个针对SUPERB情感识别任务优化的语音情感识别模型。该模型可从16kHz采样的语音中提取声学特征,识别说话者的情感状态。经IEMOCAP数据集训练后,模型能识别4种主要情感类别,测试集识别准确率为62.58%。模型提供pipeline接口和直接调用方式,便于快速部署语音情感分析应用。
DiffGAN-TTS - 采用去噪扩散生成对抗网络技术的文本到语音转换技术
DiffGAN-TTSGithubPyTorch多说话者TTS开源项目文本到语音训练模型
DiffGAN-TTS采用去噪扩散生成对抗网络技术,通过激活浅层扩散机制,提供了一种高效且高保真的文本到语音转换方案。该技术支持多种发音特征和语种,实现了保持语音自然度的同时,进行灵活的语音控制,包括音调和语速的调整。此技术适用于多语言和多说话人场景,为深度学习语音合成领域提供了新的可能性。
awesome-large-audio-models - 音频AI模型前沿进展与资源汇总
Github大型音频模型开源项目语音合成语音识别跨模态AI音乐生成
本项目汇总了音频AI领域的精选资源,涵盖语音识别、合成、翻译等多个方向的前沿进展。定期更新最新论文和开源实现,为研究者和开发者提供全面了解音频AI发展的平台。内容包括主流大型音频模型、各应用领域技术及大规模数据集,是音频AI研究的重要参考资料。
EDTalk - 高效解耦的情感说话头像合成框架
EDTalkGithub人脸动画开源项目情感说话头合成视频驱动音频驱动
EDTalk是一个创新的情感说话头像合成框架,实现了口型、头部姿势和情感表情的高效解耦。该框架通过三个轻量级模块将面部动态分解为独立的潜在空间,使用可学习的基向量定义特定动作。EDTalk采用正交基向量和高效训练策略确保各组件的独立性,并开发了音频到动作模块支持音频驱动的头像合成。这一技术在视频和音频输入下都能实现精确的情感说话头像生成。
wav2vec2-large-robust-24-ft-age-gender - Wav2vec 2.0驱动的24层神经网络实现音频年龄性别识别
GithubHuggingfaceWav2vec 2.0年龄识别开源项目性别识别模型语音识别音频分类
项目采用Wav2vec 2.0架构,构建了24层深度神经网络用于音频年龄和性别识别。通过多数据集微调,模型能准确预测0-100岁年龄段,并区分说话者为儿童、女性或男性。额外功能包括输出最终transformer层的池化状态。支持ONNX格式导出,并提供全面使用指南,为音频分析和语音处理研究提供了有力支持。
FastSpeech2 - 快速且高质量的端到端文本转语音
FastSpeech 2GithubMelGANNVIDIAPyTorch开源项目文本转语音
FastSpeech 2,面向精准快速的文本到语音转换,基于PyTorch与Espnet技术,配备Nvidia与MelGAN工具,极致优化语音生成效果,适合各类开发者利用和研究。
siglip-base-patch16-512 - 采用Sigmoid损失函数的开源计算机视觉模型
GithubHuggingfaceSigLIP图像分类图文匹配开源项目模型深度学习计算机视觉
SigLIP在CLIP架构基础上改进了损失函数设计,使用Sigmoid损失函数处理图像-文本对训练。该模型在WebLI数据集上预训练,支持512x512分辨率的图像输入,主要应用于零样本图像分类和图文检索。相比CLIP,新的损失函数无需全局相似度归一化,使模型在不同批量规模下都能保持稳定表现。
wavlm-libri-clean-100h-base-plus - WavLM微调模型在LibriSpeech数据集上的语音识别性能
GithubHuggingfaceLibriSpeechWavLM开源项目微调模型自然语言处理语音识别
本模型是基于microsoft/wavlm-base-plus在LibriSpeech ASR - CLEAN数据集上微调而来。经过3个epoch的训练,模型在评估集上达到0.0819的损失和6.83%的词错率。训练过程采用多GPU并行计算,使用Adam优化器和线性学习率调度器。模型的词错率从初始的100%显著降低至约7%,体现了其在语音识别任务上的卓越表现。模型基于Transformers 4.15.0.dev0和PyTorch 1.9.0+cu111框架,在8个GPU上进行分布式训练,并采用了Native AMP混合精度训练技术,有效提高了计算效率。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号