Project Icon

punica

在单个预训练模型上高效运行多LoRA微调模型,文本生成吞吐量提升至12倍

Punica采用分段聚集矩阵-向量乘法(SGMV)技术,使多个LoRA微调模型在单个预训练模型上高效运行,仅增加1%的存储和内存开销。相比其他系统,Punica在各种LoRA模型请求下的文本生成吞吐量提升至12倍,适用于不同版本的CUDA和Python,支持二进制包和源码构建。

llama-lora-fine-tuning - 单GPU微调LLaMA模型的高效方法
GPUGithubLLaMAVicuna开源项目微调语料库
本项目展示了在单个16G GPU上微调vicuna-7b模型的方法。通过采用LoRA、半精度模型和8位加载等技术,有效降低了内存需求。项目详细说明了环境配置、模型准备、语料处理和微调过程,并提供P100和A100的性能数据。这种方法使研究者和开发者能在有限硬件资源下进行大型语言模型的定制化训练。
LongLoRA - 探索大规模长上下文语言模型的高效训练与实用应用
GithubLLaMA2LoRALongAlpaca开源项目深度学习长上下文语言模型
LongLoRA项目开发了一种高效微调方法,处理大型长上下文语言模型,涵盖了从7B至70B的各种模型规模和LongAlpaca-12k实验性数据集。项目支持多种微调方式,在基凊测试中验证了模型性能,技术可应用于多种NLP任务,助力复杂语言处理。实现显著性能优势,为企业和研究人员在从机器翻译到自动摘要等NLP任务中提供了有效的解决方案。
S-LoRA - 大规模并发LoRA适配器高效服务系统
GPU内存优化GithubLoRA适配器S-LoRA大语言模型开源项目批处理推理
S-LoRA系统针对大规模LoRA适配器服务进行优化。采用统一分页、异构批处理和新型张量并行策略,提高内存管理效率和GPU利用率。相较现有技术,S-LoRA提升吞吐量4倍,显著增加可服务适配器数量。这一突破为大规模定制语言模型部署开辟新途径。
ChatGLM-Tuning - ChatGLM-6B和LoRA结合的经济型语言模型微调方案
AI模型ChatGLM-6BGithubLoRA开源项目微调深度学习
ChatGLM-Tuning项目是一个基于ChatGLM-6B和LoRA技术的语言模型微调解决方案。该项目包含数据预处理、模型训练和推理功能,支持Alpaca数据集。它提供预训练LoRA模型,并计划引入中文数据和RLHF技术。这一方案适用于16GB以上显存的GPU环境,为开发者提供了一种经济高效的大型语言模型定制途径。
BLoRA - 批量处理多个LoRA模型以提升GPU利用率
GPU优化GithubLoRA开源项目批处理推理语言模型
BLoRA项目开发了一种新技术,通过在同一批次中处理多个LoRA模型的推理来提高GPU利用率。该技术支持同时加载多个LoRA适配器,并在单一基础模型上进行并行推理。BLoRA不仅优化了计算效率,还为开发者提供了在不同任务间灵活切换模型行为的工具。这一简单而直观的实现为大规模语言模型的应用创造了新机会。
llama-trl - 使用 PPO 和 LoRA 微调 LLaMA
GithubLLaMA-TRLLoRAPPOReward Model TrainingSupervised Fine-tuning开源项目
本项目LLaMA-TRL通过PPO和LoRA技术进行大规模语言模型的微调,采用TRL(变压器强化学习)和PEFT(参数高效微调)方法。本文详细介绍了从安装依赖到具体实现的步骤,包括监督微调、奖励模型训练和PPO微调,助力开发者显著提升模型性能和任务适应能力。
mLoRA - 为大型语言模型提供高效多LoRA适配器构建
GithubLoRA适配器mLoRA大语言模型开源框架开源项目高效微调
mLoRA 是一个开源框架,旨在高效地对多个大型语言模型 (LLMs) 进行 LoRA 和其变体的微调。其主要功能包括同时微调多个 LoRA 适配器、共享基础模型、优化的流水线并行算法,并支持多种 LoRA 变体和偏好对齐算法。mLoRA 可在普通硬件上高效运行,支持多种模型和算法,有助于节省计算和内存资源。通过参考文档可了解如何快速部署和使用 mLoRA。
tiny_GPT2ForTokenClassification-lora - 使用PEFT框架实现GPT2模型的LoRA微调
AI模型GithubHuggingfacePEFT开源项目机器学习框架模型训练
该项目基于PEFT框架,通过LoRA适配器对tiny_GPT2ForTokenClassification模型进行微调,实现低资源消耗的模型定制化训练。项目展示了PEFT框架在轻量级模型调优中的应用方法
lorax - 支持在单个GPU上运行数千个微调模型的框架
GithubLoRAX低延迟多模型推理开源项目生产准备高通量
LoRAX框架支持在单个GPU上运行数千个微调模型,有效降低服务成本且不影响吞吐量和延迟。主要特点包括动态适配器加载、异构连续批处理、适配器交换调度和优化推理。LoRAX提供预构建的Docker镜像、Kubernetes Helm图表和Prometheus指标,并兼容OpenAI API,支持多轮聊天对话和私有适配器。免费商用,采用Apache 2.0许可。
Vicuna-LoRA-RLHF-PyTorch - Vicuna模型LoRA与RLHF的完整优化流程
GithubLoRAPyTorchRLHFVicunaVicuna-LoRA-RLHF-PyTorch开源项目
本文详述如何在普通硬件上优化Vicuna语言模型,包括环境配置、监督微调、合并PEFT适配器、训练奖励模型和PPO微调等步骤,适合中文技术人员使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号