Project Icon

gpt-fast

PyTorch原生高效文本生成项目

gpt-fast是一个基于PyTorch的高效Transformer文本生成项目,代码精简(<1000行Python),仅依赖PyTorch和sentencepiece。项目特点包括极低延迟、int8/int4量化、推测解码和张量并行,支持NVIDIA和AMD GPU。gpt-fast不是框架或库,而是展示原生PyTorch性能的示例。它支持LLaMA系列和Mixtral 8x7B等模型,提供详细基准测试和多种优化技术。该项目实现了高效的文本生成,展现了PyTorch在AI领域的强大性能。

GPTFast - Hugging Face Transformers模型推理加速工具
GPTFastGithubHugging Face开源项目推理加速量化静态键值缓存
GPTFast是一个为Hugging Face Transformers模型优化推理速度的开源Python库。它集成了多种加速技术,如静态键值缓存、int4量化和推测解码,可将模型推理速度提升7.6-9倍。GPTFast支持torch.compile、int8量化、GPTQ int4量化等优化方法,通过简单的API调用即可应用于各类Hugging Face模型。该项目持续更新,未来计划引入更多先进的加速技术。
GPT2 - PyTorch优化实现的自然语言生成模型
GPT-2GithubPyTorch开源项目文本生成深度学习自然语言处理
该项目是OpenAI GPT-2模型的PyTorch实现,提供模型训练、文本生成和指标可视化功能。代码设计兼顾可读性和性能优化,支持多GPU训练、自动混合精度和梯度检查点等特性。项目提供详细的命令行使用说明,并可在Google Colab中进行交互式文本生成和模型评估。
nanoGPT - 简洁高效的中型GPT模型训练框架
GPT训练GithubPyTorchnanoGPT开源项目深度学习语言模型
nanoGPT是一个针对中型GPT模型的训练框架,重写自minGPT项目并注重性能优化。其核心由约300行代码组成,包括训练循环和模型定义,能够轻松复现GPT-2(124M)。该框架支持从零开始训练新模型或微调预训练检查点,并提供了详细的入门指南,涵盖了从Shakespeare作品上的字符级模型训练到在OpenWebText数据集上复现GPT-2结果的完整流程。
gpt2 - 预训练语言模型与自然语言生成技术
GPT-2GithubHuggingface开源项目文本生成机器学习模型自然语言处理预训练模型
这是一个由OpenAI开发的大规模预训练语言模型,基于Transformer架构,通过自监督学习方式在英文语料上训练。模型核心功能是预测文本序列中的下一个词,可用于文本生成及其他自然语言处理任务。支持ONNX部署,便于开发者进行实际应用开发和模型微调。
gpt2 - 大规模文本生成模型的创新特性
GPT-2GithubHuggingface偏见开源项目文本生成机器学习模型语言模型
这是一款基于Transformer架构的预训练模型,以因果语言建模为目标在大量英文数据上进行自监督学习。它专注于从给定提示生成文本,可用于直接文本生成或针对特定任务的微调。尽管展示了高质量文本生成的能力,该模型可能反映其训练数据中的偏见,使用时需谨慎。这一模型应用广泛,包括文本生成和特征提取等领域。
picoGPT - 极简风格的GPT-2实现版本
GPT-2GithubNumPypicoGPT代码实现开源项目模型生成
picoGPT是一个极简风格的GPT-2实现版本,采用NumPy全面编写,前向传播过程在短短40行代码中展开。它虽然运行缓慢,不支持多重训练或高级的采样方法,但其独特的简化设计提供了一种有趣的学习与试验环境,极适合AI和机器学习领域的爱好者及开发者。
modded-nanogpt - 基于PyTorch的高效GPT-2训练器变体
GPT-2GithubNanoGPTPyTorch开源项目模型优化训练效率
Modded-NanoGPT是一个基于Andrej Karpathy的llm.c项目的GPT-2训练器变体。该项目通过引入旋转嵌入等现代技术,将训练效率提高一倍,仅需5B tokens即可达到与原版相同的验证损失。代码简化至446行,实现了124M参数的transformer模型。在Fineweb验证集上,模型达到3.2818的验证损失。通过架构调整和超参数优化,该项目在保持性能的同时显著提升了训练速度。
optimized-gpt2-1b - GPT-2架构优化模型 提供高效可扩展的自然语言处理功能
GithubHuggingfacetransformers人工智能开源项目机器学习模型模型卡自然语言处理
optimized-gpt2-1b是一个基于GPT-2架构优化的大规模语言模型。该模型在保持GPT-2性能的基础上,通过架构和训练方法的优化提高了效率和可扩展性。它可应用于文本生成、摘要和问答等多种自然语言处理任务。模型支持直接使用或针对特定需求进行微调。项目提供了使用说明和评估结果,有助于研究人员和开发者更好地理解和应用这一语言模型。
ov-gpt2-fp32-no-cache - 改进GPT-2文本生成性能的开源项目,结合Optimum-Intel
GPT2GithubHuggingfaceOpenvinoOptimum-Intel开源项目文本生成模型
此项目结合Optimum-Intel而优化GPT-2的文本生成,继承于HF模型库的GPT-2,并采用OMZ的Openvino IR,实现了无缓存的高效预测。该模型允许在Optimum-Intel环境中使用OVModelForCausalLM进行文本生成,具有长文本输出和多序列结果的功能,帮助提升生成效率。
FasterTransformer - 基于NVIDIA平台的高性能Transformer编解码器实现与调优
BERTFasterTransformerGPTGithubNVIDIATensorRT-LLM开源项目
FasterTransformer不仅支持多框架集成,还针对NVIDIA新一代GPU优化了编解码性能,极大提升了操作效率和处理速度。包含模型支持、性能对比及API演示的详细文档,有助于用户深入了解并有效使用FasterTransformer。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号