Project Icon

tnt

PyTorch训练库,简化和优化模型训练过程

TNT 是一个用于 PyTorch 的训练库,支持 pip 和 conda 安装,并提供 master 版本更新。TNT 简化了 PyTorch 模型训练,提升开发效率。

pytorch-onn - 基于PyTorch的光子神经网络仿真与优化框架
AI计算GPU加速GithubPyTorch光子集成电路开源项目神经网络
pytorch-onn是一个基于PyTorch的光子神经网络仿真框架。该框架支持GPU加速的相干和非相干光学神经网络训练与推理,可扩展至百万参数规模。它提供了高度优化的并行处理和多功能API,支持从器件到系统级的协同设计与优化。这一工具主要面向神经形态光子学、光学AI系统和光子集成电路优化等领域的研究人员。
tiny-cuda-nn - 专注于快速训练和查询神经网络的开源框架
C++编程CUDAGPUGithubTiny CUDA Neural Networks开源项目深度学习
Tiny CUDA Neural Networks是一个紧凑、高效的开源框架,专注于快速训练和查询神经网络。它包含优化的多层感知器(MLP)和多分辨率哈希编码,并支持多种输入编码、损失函数和优化器。适用于NVIDIA GPU,通过C++/CUDA API和PyTorch扩展,助力高性能计算和深度学习项目。
Pytorch-NLU - 轻量级NLP工具包 支持文本分类和序列标注
GithubPytorch-NLU序列标注开源项目文本分类自然语言处理预训练模型
Pytorch-NLU是一个轻量级自然语言处理工具包,专注于文本分类、序列标注和文本摘要任务。该工具包支持BERT、ERNIE等多种预训练模型,提供多种损失函数,具有依赖少、代码简洁、注释详细、配置灵活等特点。Pytorch-NLU包含丰富的数据集,使用方式简单,可快速应用于实际NLP项目中。
onnxruntime - 跨平台的机器学习模型推理与训练加速工具
GithubONNX Runtime开源项目机器学习模型训练深度学习硬件加速
ONNX Runtime是一款跨平台的机器学习推理和训练加速工具,兼容PyTorch、TensorFlow/Keras、scikit-learn等深度学习框架及传统机器学习库。它支持多种硬件和操作系统,通过硬件加速和图优化实现最佳性能,显著提升模型推理和训练速度,尤其在多节点NVIDIA GPU上的Transformer模型训练中表现出色。
optimizer - 一个通过预包装的优化通道对ONNX模型进行优化的C++库
GithubONNX优化器命令行安装开源项目模型优化
ONNX提供了一个C++库,通过预包装的优化通道对ONNX模型进行优化。主要目标是促进各ONNX后端实现共享工作,并支持多种直接在ONNX图上实现的优化。用户可以通过简单的函数调用使用这些通道,或添加新的优化通道。安装方式包括通过PyPI或从源代码构建。
TinyNeuralNetwork - 高效易用的深度学习模型压缩框架
GithubTinyNeuralNetwork开源项目模型压缩深度学习神经网络量化训练
TinyNeuralNetwork是一个开源的深度学习模型压缩框架,提供神经架构搜索、剪枝、量化和模型转换等功能。该框架支持计算图捕获、依赖解析、多种剪枝算法、量化感知训练和模型转换,为深度学习模型优化提供全面解决方案。TinyNeuralNetwork已应用于天猫精灵、海尔电视等超过1000万IoT设备,实现AI能力部署。
avalanche - 基于 PyTorch 的持续学习开源库
AvalancheContinual LearningGithubPytorch开源开源项目机器学习
Avalanche 是基于 PyTorch 的持续学习开源库,提供快速原型设计、训练和评估工具。其模块包括数据处理、模型训练、评估和日志记录,帮助研究人员提高代码效率和研究影响力。简单示例和教程使用户快速上手,社区支持持续改进库功能。
PiPPy - PyTorch模型自动化管道并行工具
GithubPiPPyPyTorchpipeline parallelism并行计算开源项目模型扩展
PiPPy是一个为PyTorch模型提供自动化管道并行功能的开源工具。它通过自动拆分模型代码和处理复杂拓扑结构,简化了管道并行的实现过程。PiPPy支持跨主机并行、与其他并行方案结合,以及多种调度策略。该工具能够帮助研究人员和开发者在不大幅修改原有代码的情况下,实现PyTorch模型的高效扩展。
BMTrain - 分布式大规模深度学习模型训练优化工具
BMTrainGithubZeRO优化分布式训练大模型训练开源项目性能优化
BMTrain是一款为大规模深度学习模型设计的分布式训练工具。它能够支持训练包含数十亿参数的模型,并保持代码简洁性。该工具集成了ZeRO优化和通信优化等技术,可提高训练效率和显存利用率。BMTrain与PyTorch兼容,仅需少量代码调整即可实现分布式训练。在13B参数的GPT-2模型训练中,BMTrain展现出优越性能。
pytorch-deep-learning - 深入PyTorch的深度学习实用教程
GithubPyTorch开源项目深度学习神经网络计算机视觉迁移学习
本课程涵盖从基础到高级的深度学习概念,通过实践教学与丰富的视频材料,讲解PyTorch操作和应用。包括神经网络分类、计算机视觉和数据集处理等主题,适合希望深化机器学习理解和应用的学习者。课程包括最新的PyTorch 2.0教程,确保内容的时效性和专业性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号