Project Icon

torchrec

旨在提供大规模推荐系统所需的常见稀疏性和并行性原语的PyTorch库

TorchRec是一个专为大规模推荐系统设计的PyTorch库,提供稀疏性和并行性解决方案。它支持多种嵌入表分片策略,并能自动优化分片计划。通过流水线训练和优化内核,提高模型性能。还支持量化训练和推理,包含多个验证的模型架构和数据集示例,适用于需要高性能和扩展性的推荐系统项目。

implicit - 高性能Python隐式反馈协同过滤库
GithubPython库implicit协同过滤开源项目推荐系统矩阵分解
Implicit是一个开源的高性能Python协同过滤库,专为隐式反馈数据集设计。它实现了多种推荐算法,如交替最小二乘法、贝叶斯个性化排序等。支持多线程和GPU加速,适用于大规模数据处理。提供详细文档和示例,便于开发者快速构建推荐系统。
RecSysPapers - 推荐系统研究进展与行业实践全面汇总
Github开源项目推荐系统深度学习点击率预测特征交互论文汇总
RecSysPapers项目收录827篇推荐系统相关论文,涉及召回、排序、多任务和多模态等领域。项目持续更新业界进展,提供分类和阅读指引,是推荐系统研究和实践的重要参考。收录论文包括阿里巴巴、谷歌、微软等知名公司的最新实践,对推荐系统技术的理解和应用具有参考价值。
recommender_system_with_Python - Python推荐系统的实现与应用实例
GithubPython协同过滤开源项目推荐系统深度学习矩阵分解
详细讲解使用Python实现推荐系统的方法与案例,涵盖内容过滤、协作过滤和矩阵分解等基本理论,并通过实际项目展示这些技术的应用。此外,还介绍了基于Naver新闻数据的推荐系统、使用Keras和深度学习技术的实例,以及利用LangChain和GPT-4o提升推荐系统解释性的案例。更多代码及详细说明请参阅相关博客文章。
terratorch - 强大灵活的地理空间基础模型微调框架
GithubPyTorchTerraTorch地理空间数据开源项目机器学习模型微调
TerraTorch是基于PyTorch Lightning和TorchGeo的地理空间数据处理库,为地理空间基础模型提供微调框架。它支持多种预训练模型,包括图像分割、分类和像素回归任务的训练器。用户通过配置文件可启动微调任务,实现地理空间数据的处理和分析。
disco - Ruby协同过滤推荐系统库 支持用户和物品推荐
GithubRailsRuby协同过滤开源项目推荐系统矩阵分解
Disco是一个用于Ruby和Rails的推荐系统库,基于协同过滤技术。该库支持用户和物品推荐,可处理显式和隐式反馈数据,并使用高性能矩阵分解算法。Disco提供简洁的API,支持存储推荐结果和模型,能够解决冷启动问题。此外,它可与近似最近邻库集成,提升大规模数据集的性能。
HierarchicalKV - 分层键值存储技术助力大规模推荐系统优化
GPU存储GithubHierarchicalKVNVIDIA Merlin开源项目推荐系统键值存储
HierarchicalKV是NVIDIA Merlin项目的组成部分,为推荐系统提供分层键值存储功能。该库可在GPU高带宽内存和主机内存中存储特征嵌入,支持大规模推荐模型训练。通过绕过CPU和实现表大小约束策略,HierarchicalKV提升了性能和内存利用率。这使得NVIDIA GPU更适合训练大型搜索、推荐和广告模型,简化了复杂推荐模型的构建、评估和部署过程。
POI-Recommendation - 智能兴趣点推荐的前沿研究资源库
GithubPOI推荐个性化推荐图神经网络开源项目时空数据深度学习
这个项目汇集了兴趣点(POI)推荐领域的最新研究成果,包括深度学习、图神经网络和注意力机制等技术在POI推荐中的应用。项目重点关注时空依赖性、用户偏好建模和冷启动等问题,旨在改进POI推荐的个性化和情境感知能力。资源库收录了大量高质量论文及其代码实现,为POI推荐研究提供了全面的参考资料。
Awesome-Recsys - 推荐系统领域顶级会议论文资源库
Github人工智能开源项目推荐系统数据挖掘机器学习深度学习
Awesome-Recsys项目汇集推荐系统领域顶级会议论文,包括SIGIR、RecSys、ICLR等重要会议的最新研究成果。该资源库定期更新,提供论文标题和链接,方便研究人员和从业者快速了解领域进展,获取感兴趣的研究内容。
skorch - scikit-learn兼容的PyTorch神经网络库
GithubGridSearchCVPyTorchscikit-learnskorch开源项目神经网络
skorch 是一款与 scikit-learn 兼容的神经网络库,通过封装 PyTorch 简化深度学习模型的构建和训练。功能包括学习率调度、早停与参数冻结等,并支持 Hugging Face 和 GPyTorch 的集成。用户可通过 pip 或 conda 安装,并在 sklearn Pipeline 和网格搜索中使用其功能,提升深度学习模型的开发与优化效率。
torch2trt - PyTorch模型转TensorRT加速工具
GPU加速GithubPyTorchTensorRTtorch2trt开源项目模型转换
torch2trt是一款将PyTorch模型转换为TensorRT的开源工具。它基于TensorRT Python API开发,具有简单易用和灵活可扩展的特点。用户通过单个函数调用即可完成模型转换,还支持自定义层转换器。该工具适配多种常用模型,并提供模型保存和加载功能。torch2trt能显著提升NVIDIA设备上的模型推理性能,适用于PyTorch模型推理加速场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号