Project Icon

cotta

持续测试时间域适应的开源框架

CoTTA是一个开源项目,专注于持续测试时间域适应研究。该项目实现了CoTTA、AdaBN和TENT等方法,用于解决图像分类和语义分割任务中的域适应问题。支持CIFAR、ImageNet和Cityscapes到ACDC等数据集的迁移实验,并提供了详细的实验指南和性能基准。这个框架有助于提升机器学习模型在变化环境中的适应能力,为计算机视觉领域的研究人员提供了实用工具。

test-time-adaptation - 多场景计算机视觉模型在线测试时适应框架
GithubPyTorch在线测试时适应开源项目模型微调深度学习计算机视觉
该项目是一个基于PyTorch的开源在线测试时适应框架。支持CIFAR、ImageNet等多个数据集变体和预训练模型,实现了TENT、MEMO、EATA等多种测试时适应方法。框架采用模块化设计,易于扩展新方法,并提供混合精度训练功能。此外,项目还包含全面的基准测试结果和图像分割任务实验。
awesome-source-free-test-time-adaptation - 测试时适应研究论文汇总与分类
Github开源项目无源数据机器学习测试时适应神经网络领域适应
该项目整理了测试时适应(TTA)研究领域的论文,涵盖自监督、信息熵、批量归一化等多个方向。列表包含最新研究成果和代码链接,定期更新维护。为机器学习研究人员和开发者提供TTA技术的系统概览,便于深入学习和应用。
awesome-test-time-adaptation - 测试时适应技术资源汇总与研究概览
GithubTest-Time Adaptation分布偏移域适应开源项目数据集机器学习
项目汇总了测试时适应技术的研究资源,包括域适应、批次适应、实例适应、在线适应和先验适应。内容涵盖问题概述、分类整理、数据集信息和文献引用。这些资料有助于研究人员和开发者了解该领域的最新进展。
VoTT - 开源图像与视频标注工具,兼容多种数据存储方式
GithubVoTT图像标注开源标注工具开源项目机器学习视频标注
VoTT是一个基于React和Redux的开源图像和视频标注工具,支持从本地或云存储导入数据,并将标注数据导出到不同的存储提供商。作为机器学习工作流中的工具,VoTT提供图像和视频帧的标签功能,采用现代开发框架TypeScript编写,并进行代码检查和单元测试。支持Azure Blob Storage、Bing Image Search等多种数据源,用户可通过浏览器使用Web版本。
Alpaca-CoT - 一站式AI指令调谐与语言处理平台
Alpaca-CoTGithub参数效率大型语言模型开源项目指令调优平台统一界面
Alpaca-CoT,一款集成指令收集、参数效率优化和语言处理的AI工具,提供统一与高效的用户界面, 适用于处理复杂的语言模型任务,增强操作的精确度及效能。
jittor - 高性能实时编译深度学习框架,集成多种先进模型库
GithubJIT编译JittorPython开源项目深度学习框架高性能
Jittor是一个基于实时(JIT)编译和元操作符的高性能深度学习框架。它支持Python前端,CUDA和C++后端,能够生成针对不同模型的高效代码。Jittor提供了丰富的模型库,涵盖图像识别、检测、分割、生成、可微渲染、几何学习和强化学习等领域。安装方式多样,环境配置简便,并且包含详尽的教程和文档,帮助用户快速入门。
open-cd - 开源变更检测工具箱,支持多种视觉任务模型
GithubOpen-CDPyTorch变化检测工具箱开源开源项目技术报告
Open-CD是一个基于开源通用视觉工具的变更检测工具箱,支持多种变更检测模型和数据集。项目提供详细文档和示例,支持PyTorch 2.0等工具,并在GitHub和Hugging Face上发布。最新技术报告已在arXiv上线,用户可从Colab教程快速上手,并有详细的安装、训练和测试指南。
OpenTAD - 多功能时序动作检测工具箱支持多数据集和前沿方法
GithubOpenTADPyTorch开源工具箱开源项目时序动作检测计算机视觉
OpenTAD是一个基于PyTorch的开源时序动作检测工具箱,支持9个TAD数据集。其模块化设计便于复现现有方法和实现新方法,支持基于特征和端到端的训练模式。该项目提供多种预提取特征,实现了多个前沿TAD方法,并在EPIC-KITCHENS-100和Ego4D 2024挑战赛中表现出色。
ect - 开源框架实现高效一致性模型生成
ECTGithub一致性模型图像生成开源项目深度学习生成模型
ECT是一个开源框架,采用简单原则方法实现少步生成能力。该框架仅需小幅调优即可获得显著效果,并随训练计算量增加持续提升性能。ECT允许自定义一致性模型,在CIFAR10数据集上通过1-2步迭代生成高质量图像,性能超越先进扩散模型和GAN。
awesome-domain-adaptation - 领域自适应技术研究综合资源库
Github对抗学习开源项目无监督学习深度学习迁移学习领域适应
该项目汇集了领域自适应技术的最新研究论文、代码和相关资源。内容涵盖无监督、半监督、弱监督等多个子领域,以及计算机视觉、自然语言处理等应用场景。论文按主题分类整理,并提供代码实现链接,方便研究人员快速了解该领域前沿进展,是领域自适应研究的重要参考资料库。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号