Project Icon

cards_bottom_right_swin-tiny-patch4-window7-224-finetuned-v2

基于Swin Transformer图像分类模型实现60.79%精度

这是一个基于microsoft/swin-tiny-patch4-window7-224架构的图像分类模型。经过30轮训练迭代,模型采用128批量大小,5e-05学习率,结合Adam优化器与线性学习率调度策略。模型性能从初始的41.56%提升至60.79%,实现稳定的分类效果。

swinv2-base-patch4-window8-256 - 增强视觉Transformer模型,提供升级的容量与图像分辨率
GithubHuggingfaceImageNetSwin Transformer图像分类开源项目模型自监督预训练视觉Transformer
Swin Transformer v2是为图像分类和密集识别任务而设计的视觉Transformer模型。它在ImageNet-1k上进行256x256分辨率的预训练,具有通过局部窗口自注意力机制实现线性计算复杂度的特性。相比前代,Swin Transformer v2加入了残差后范数加余弦注意力以提升训练稳定性、日志距离连续位置偏置以提升低分辨率预训练模型在高分辨率任务中的表现,以及SimMIM自我监督预训练方法以减少对大规模标注图像的依赖。
swin_base_patch4_window7_224.ms_in22k_ft_in1k - Swin Transformer模型:用于图像分类和特征提取的层级视觉架构
GithubHuggingfaceImageNetSwin Transformertimm图像分类开源项目模型特征提取
swin_base_patch4_window7_224.ms_in22k_ft_in1k是一个基于Swin Transformer架构的图像分类模型,在ImageNet-22k上预训练并在ImageNet-1k上微调。该模型拥有8780万参数,支持224x224像素图像处理,可用于图像分类和特征提取。通过timm库,研究人员可以方便地加载预训练模型,进行图像分类、特征图提取或生成图像嵌入。这一模型在计算效率和性能之间实现了良好平衡,适用于各种计算机视觉任务。
swin_large_patch4_window7_224.ms_in22k_ft_in1k - 分层视觉Transformer模型 基于ImageNet-22k预训练和ImageNet-1k微调
GithubHuggingfaceImageNetSwin Transformertimm图像分类开源项目模型特征提取
swin_large_patch4_window7_224.ms_in22k_ft_in1k是基于Swin Transformer架构的图像分类模型。该模型在ImageNet-22k上预训练,ImageNet-1k上微调,拥有1.965亿参数,34.5 GMACs计算量。它支持224x224输入图像,适用于图像分类、特征提取和图像嵌入。模型采用分层结构和移位窗口机制,平衡了计算效率和性能。
swinv2_tiny_window8_256.ms_in1k - Swin Transformer V2轻量级图像分类与特征提取模型
GithubHuggingfaceImageNet-1kSwin Transformer V2timm图像分类开源项目模型特征提取
swinv2_tiny_window8_256.ms_in1k是基于Swin Transformer V2架构的轻量级图像分类模型,在ImageNet-1k数据集上预训练。该模型拥有2830万参数,6.0 GMACs计算量,支持256x256像素输入。它可用于图像分类、特征图提取和图像嵌入等任务,提供高效的视觉特征提取能力。研究人员和开发者可通过timm库轻松加载此预训练模型,应用于多种计算机视觉项目。
vit-base-uppercase-english-characters - 大写英文字符高精度图像分类模型
GithubHuggingfaceadam优化vit-base-uppercase-english-characters准确率图像分类开源项目模型模型微调
该模型基于vit-base-patch16-224-in21k进行了微调,并在pittawat/uppercase-english-characters数据集上达到了0.9573的准确率。训练过程中采用了学习率为0.0002的Adam优化器,损失率为0.3160。使用Transformers 4.26.1和Pytorch 1.13.0等框架版本,显著提升了在图像分类领域的性能。
eva02_large_patch14_448.mim_m38m_ft_in22k_in1k - EVA02大型视觉模型在ImageNet达到90.054%分类准确率
EVA02GithubHuggingfaceImageNet图像分类开源项目模型深度学习神经网络
EVA02_large_patch14_448是一个基于视觉Transformer架构的图像处理模型,通过在Merged-38M数据集预训练和ImageNet数据集微调,在图像分类任务中达到90.054%的准确率。模型整合了均值池化、位置编码等技术,支持图像分类和特征提取应用。
rorshark-vit-base - ViT架构图像分类模型实现99.23%精度
GithubHuggingfaceViT准确率图像分类开源项目机器学习模型训练模型
rorshark-vit-base是基于google/vit-base-patch16-224-in21k模型微调的图像分类器。该模型采用Vision Transformer架构,在imagefolder数据集上达到99.23%的分类准确率。经过5轮训练,使用Adam优化器和线性学习率调度。虽然在高精度图像分类任务中表现出色,但其具体应用场景和局限性有待进一步研究。
resnet-50-finetuned-cats_vs_dogs - ResNet-50微调模型实现高精度猫狗图像分类
GithubHuggingfaceResNet-50图像分类开源项目模型模型微调深度学习猫狗识别
项目利用微软的ResNet-50架构,通过在cats_vs_dogs数据集上进行微调,开发出一个高效的猫狗图像分类模型。训练过程中使用Adam优化器和线性学习率调度器,仅需3个训练周期即达到优异性能:评估集准确率98.93%,验证损失0.0889。这一成果展示了预训练模型在特定图像分类任务中的适应性和高效性。
vit_small_patch16_384.augreg_in21k_ft_in1k - 增强的视觉转换器模型及其在图像分类中的应用
GithubHuggingfaceImageNetPyTorchVision Transformer图像分类开源项目数据增强模型
ViT图像分类模型结合增强与正则化技术,基于ImageNet-21k训练后在ImageNet-1k微调。模型通过JAX进行训练并移植至PyTorch,拥有22.2M参数和384x384图像输入,展示了12.4 GMACs的高效性。适用于图像分类与特征提取,在视觉识别和嵌入生成中表现出色。
cat-vs-dog-resnet-50 - 基于微调的ResNet-50实现高精度猫狗图像分类
Adam优化GithubHuggingfacemicrosoft/resnet-50图像分类开源项目模型猫狗分类精度
此项目采用微调版的microsoft/resnet-50模型,以其在cats_vs_dogs数据集上达到的0.9654高准确率而表现出色。适合高精度图像识别场景,模型训练过程使用了线性学习率调度器和Adam优化器,确保了结果的稳定与可靠。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号