Project Icon

rl-mpc-locomotion

强化学习与模型预测控制结合的四足机器人运动框架

这个项目为四足机器人运动任务开发了一个快速仿真和强化学习训练框架。它采用分层控制结构,结合高层策略网络和低层模型预测控制器。其MPC控制器基于Cheetah Software改写,便于移植到主流仿真平台。项目利用NVIDIA Isaac Gym进行并行训练,使用Unitree Robotics的Aliengo模型,并实现了从仿真到实物的迁移。该框架适用于多种四足机器人类型和步态,为相关研究提供了有力支持。

awesome-deep-rl - 全面的深度强化学习资源库
Github基准测试开源库开源项目深度强化学习环境模拟竞赛
该项目汇集了深度强化学习领域的各类资源,包括主流库、基准测试结果、训练环境、竞赛信息和发展时间线。研究人员和开发者可以在此快速了解该领域的全貌,获取有价值的工具和信息。作为一个综合性资源库,它为深度强化学习的学习和研究提供了便利。
ElegantRL - 云原生高效的大规模并行深度强化学习框架,支持弹性扩展
DRL算法ElegantRLGithub云原生并行计算开源项目深度强化学习
ElegantRL是一个云原生的大规模并行深度强化学习框架,支持多种DRL算法和多代理环境。其核心代码少于1000行,具备轻量、高效和弹性特点。通过微服务架构和容器化,支持大规模计算节点扩展,并自动分配云端资源。相比Ray RLlib和Stable Baselines 3,ElegantRL在单GPU、多GPU和云平台测试中更稳定高效。广泛应用于RLSolver、FinRL等项目,并支持Isaac Gym等模拟器。
awesome-robotics-libraries - 机器人仿真与开发库资源汇总
Github仿真器动力学仿真开源开源项目机器人平台机器人库
该项目汇集了多种机器人仿真器和开发库,涵盖动力学仿真、逆运动学、机器学习等领域。列表包含开源和商业软件的功能、编程语言和许可信息,为机器人研究和开发人员提供全面的工具选择参考。
pogema - 多智能体路径规划的灵活环境平台
GithubPOGEMA多智能体寻路开源项目强化学习网格环境部分可观测
POGEMA是一个专为部分可观测多智能体路径规划(PO-MAPF)研究设计的网格环境平台。该平台具有灵活性、可调节性和可扩展性,支持多种PO-MAPF场景。POGEMA允许智能体在网格中移动并避免碰撞,提供随机地图生成和自定义地图输入功能。此外,POGEMA与多个主流强化学习框架兼容,便于研究人员创建实验环境,探索分布式决策和多智能体协作导航等问题。
rl-agents - 强化学习算法集:覆盖多种环境及应用
Deep Q-NetworkGithubMonte-Carlo Tree SearchReinforcement LearningValue Iterationrl-agents开源项目
此页面介绍了多种强化学习算法的实现,如价值迭代、交叉熵方法、蒙特卡洛树搜索和深度Q网络,适用于有限MDP和连续动作空间等环境。用户可参考详细的安装和使用指南,通过命令行运行实验和基准测试,并使用Gym Monitor和Tensorboard等工具进行性能监控,非常适合优化决策和数据分析的研究者与开发者。
sample-factory - 高效强化学习框架实现快速训练和卓越性能
GithubPPO算法Sample Factory开源项目强化学习环境集成高吞吐量
Sample Factory是一个高效的强化学习库,专注于同步和异步策略梯度实现。它提供优化的算法架构、灵活的训练模式和多种环境支持,包括多智能体训练和PBT等功能。该库在VizDoom、IsaacGym和DMLab-30等多个领域展现出优秀性能,同时减少训练时间和硬件需求。Sample Factory支持导入其他项目,并允许自定义环境和模型架构。
DeepLabCut - 无标记动物姿态估计工具箱
DeepLabCutGithub动物姿态估计开源工具箱开源项目神经科学应用行为追踪
DeepLabCut是一个无标记动物姿态估计工具箱。此工具适用于各类动物行为的分析,并通过TensorFlow和PyTorch加强模型训练功能。它整合了多种新技术,如MobileNetV2s与EfficientNets,有效提升了效率与准确性。项目提供多语种文档与在线课程,方便用户快速掌握实时多动物追踪及三维姿态估计技术。DeepLabCut已应用于多种场合并获得验证,通过社区持续的优化适用于从神经科学到生态研究的广泛领域。
iros20-6d-pose-tracking - 6D姿态跟踪的优化方案,提高机器人操控和视觉领域的精度和效率
6D姿态跟踪GithubRGB-D图像iros20-6d-pose-trackingse(3)-TrackNet开源项目机器人操作
se(3)-TrackNet通过校准合成图像残差,实现视频序列中的6D姿态跟踪,适用领域包括机器人操控和增强现实。其神经网络架构有效减少域迁移,并采用Lie Algebra实现三维定向表示,即使仅使用合成数据训练也能在真实图像中工作。研究表明,在遮挡条件下,该方法提供稳定和精准的姿态估计,计算效率高达90.9Hz。
Safe-Reinforcement-Learning-Baselines - 综合安全强化学习研究资源库
GithubSafe Reinforcement Learning基准测试安全强化学习开源项目环境算法
Safe-Reinforcement-Learning-Baselines项目汇集了安全强化学习领域的多种基线算法和基准环境,涵盖单智能体和多智能体场景。该资源库提供环境支持、算法实现、相关调查、学术论文和教程等全面内容,为研究人员提供系统性的安全强化学习工具和参考资料,促进该领域的持续发展和创新。
VoxPoser - 使用语言模型的3D机器人操作轨迹合成系统
3D价值地图GithubVoxPoser开源项目机器人操作语言模型轨迹合成
VoxPoser是一个3D机器人操作轨迹合成系统,结合大型语言模型和视觉语言模型实现零样本任务执行。该项目在RLBench环境中实现,无需训练数据即可生成复杂操作轨迹。系统通过语言模型程序(LMPs)递归生成代码,分解指令并为子任务组合价值图。VoxPoser包含接口、规划器和控制器等核心组件,用于规划和执行机器人操作任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号