Project Icon

deepsnap

高效灵活的图神经网络库 支持异构图和标准化流程

DeepSNAP是一个专为图神经网络设计的Python库,连接NetworkX和PyTorch Geometric,提供灵活的图操作和标准化流程。它支持高效的图操作和转换、异构图处理,并提供数据集分割、负采样等功能。DeepSNAP的API易于使用,适用于节点分类、链接预测和图分类等多种图学习任务。

DeepSpeed - 一个深度学习优化库,专为大规模模型训练和推理设计
DeepSpeedGithub分布式训练大规模模型训练开源项目模型压缩模型推理
DeepSpeed 是一个深度学习优化软件套件,专为大规模模型训练和推理设计,能显著优化系统性能和降低成本。它支持亿级至万亿级参数的高效管理,兼容各种计算环境,从资源受限的GPU系统到庞大的GPU集群。此外,DeepSpeed 在模型压缩和推理领域亦取得创新成就,提供极低的延迟和极高的处理速率。
OpenGraph - 图神经网络零样本学习的突破性研究
GithubOpenGraph图生成图神经网络大语言模型开源项目零样本学习
OpenGraph是一个创新的图基础模型,通过从大语言模型中提取零样本图泛化能力,解决了图神经网络领域的关键技术挑战。该模型引入了统一图标记器、可扩展图transformer和基于大语言模型的数据增强机制,在多种场景下展现出优异的零样本图学习性能。这项研究为图神经网络的泛化能力提升和应用场景拓展开辟了新方向。
graph-learn - 大规模分布式图神经网络框架,兼容PyTorch和TensorFlow
GithubGraph-Learn分布式框架图神经网络大规模图数据实时推理开源项目
Graph-Learn是一款分布式框架,专为开发和应用大规模图神经网络(GNN)而设计,已成功应用于阿里巴巴的搜索推荐、网络安全和知识图谱等场景。框架包括GraphLearn-Training和Dynamic-Graph-Service模块,支持批量图采样、在线推理及流图更新功能,兼容PyTorch和TensorFlow,提供完整的GNN模型开发解决方案。
grape - 高性能图处理和节点嵌入库
GRAPEGithub图可视化图处理图嵌入开源项目节点嵌入
GRAPE是一款高性能图处理和节点嵌入库,专为处理大规模图数据而设计。它采用Rust和Python混合开发,可在普通计算机和高性能集群上运行。GRAPE提供丰富的图加载、节点嵌入、分类和处理功能,支持多种嵌入模型和分类器。相比NetworkX,GRAPE在处理大规模图时表现更优。此外,GRAPE还提供详细的教程和文档,方便用户进行图分析和机器学习研究。
torch-dreams - 神经网络可视化与解释性增强工具
GithubTorch-Dreams可解释性图像生成开源项目特征可视化神经网络
Torch-Dreams是一个Python库,专注于神经网络可视化和增强模型可解释性。它提供特征可视化、通道激活和多模型同步可视化等功能,支持批量处理和自定义变换。这个工具适合研究人员分析深度学习模型内部机制,也可用于生成艺术创作。
Spectral-Graph-Survey - 谱图神经网络研究综述与发展趋势
Github图信号处理图神经网络开源项目空间域谱图卷积频谱域
该项目汇集了谱图神经网络领域的重要研究成果,包括里程碑论文、空间和谱域方法对比以及双胞胎论文等。内容涵盖2015年至2023年的关键进展,系统梳理了该领域的发展脉络。项目不仅总结现有工作,还探讨未来趋势,为谱图神经网络研究提供全面参考。
pyg-lib - 图形神经网络高性能计算库
CUDAGithubPyTorchPythonpyg-lib安装开源项目
pyg-lib是一款专为图形神经网络优化的高性能计算库。该项目为Linux、Windows和macOS等主流操作系统提供预构建的Python包,兼容多个PyTorch版本和CUDA组合,支持Python 3.8至3.12。pyg-lib通过提升图形神经网络的计算效率,为研究和开发提供了实用工具。研究人员和开发者可根据具体的系统环境,使用pip命令快速安装所需版本,轻松增强图形神经网络的性能。
DIG - 图深度学习的综合平台,支持高级图生成、自监督学习和三维图研究
DGLDIGGithubPyG图深度学习图生成开源项目
DIG提供统一的数据接口、常用算法和评估指标,支持高级图深度学习任务如图生成、自监督学习、解释性、三维图、OOD图的开发和基准测试。DIG帮助研究人员轻松开发新方法并与基线方法进行比较。最新版本基于PyG 2.0.0升级,推荐使用。
NN-SVG - 高效自动生成神经网络架构图的工具
GithubNN-SVGSVG文件开源项目机器学习深度学习神经网络
NN-SVG是一款通过参数化方式创建神经网络架构图的工具,支持导出为SVG文件,适用于学术论文和网页。它能生成经典全连接神经网络、卷积神经网络和深度神经网络图形,使用D3和Three.js库,用户可自定义图形大小、颜色和布局。该工具旨在节省机器学习研究人员的时间,并可作为教学工具使用。
instant-ngp - 高效训练和渲染神经图形基元的开源框架
3D重建GithubNeRF实时渲染开源项目机器学习神经图形基元
instant-ngp是一个基于CUDA的开源框架,用于高效训练和渲染神经图形基元。该项目支持NeRF、SDF、神经图像和神经体积等多种基元,通过多分辨率哈希编码和tiny-cuda-nn实现快速训练。instant-ngp提供交互式GUI、VR模式和相机路径编辑等功能,便于探索和创建各类神经图形。此外,其Python接口支持自动化实验和功能扩展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号