Project Icon

diagram_detr_r50_finetuned

BPMN形状数据集上的精细调优识别模型

该项目在BPMN形状数据集上,精细调优了kacper-cierzniewski/daigram_detr_r50_albumentations模型,取得了有效的评估表现。通过调整学习率、批量大小以及优化器等超参数,并采用线性学习率调度,该模型在多达500个训练周期中持续优化。最终的训练损失达到0.9817,通过Native AMP混合精度训练技术,该模型在BPMN形状识别任务中具有较高的准确性和稳定性。

mask2former-swin-large-ade-panoptic - 通用图像分割模型,提升性能和效率
ADE20kGithubHuggingfaceMask2FormerMaskFormer分割开源项目模型视觉
Mask2Former利用多尺度可变形注意力Transformer,提高图像分割性能与效率。其掩蔽注意力解码器在不增加计算负担的情况下提升表现,适用于实例、语义和全景分割。基于ADE20k全景分割数据集的训练研究,提供优化的分割方案。
ChatGLM-Efficient-Tuning - 微调ChatGLM-6B模型,支持多种训练和量化方法
ChatGLMGithubRLHF开源项目数据集机器学习高效微调
ChatGLM-Efficient-Tuning项目提供高效微调ChatGLM-6B模型的工具和方法,支持LoRA、P-Tuning V2等多种微调方式,适用于单GPU和多GPU训练。项目还提供Web UI和CLI操作,支持4-bit和8-bit量化训练。通过丰富的数据集和功能,如强化学习和模型评估,满足不同场景的微调需求。详情请参见项目Wiki。
Replete-LLM-V2.5-Qwen-14b-GGUF - Replete-LLM-V2.5-Qwen-14b模型的多量化处理与硬件优化概述
ARM芯片GithubHuggingfaceRombos-LLM-V2.5-Qwen-14b开源项目性能比较模型模型优化量化
该项目对Rombos-LLM-V2.5-Qwen-14b模型进行了多种量化优化,使用了llama.cpp的b3825版本。支持多种量化格式,如f16、Q8_0、Q6_K_L等,适用不同硬件环境,推荐Q6_K_L和Q5_K_L以实现高质量和资源节省。用户可根据硬件需求选择合适的格式,并使用huggingface-cli进行下载。针对ARM芯片提供了特定的优化量化选项Q4_0_X_X,广泛适用于文本生成应用,提升运行效率和输出质量。
determined - 深度学习平台,支持分布式训练与超参数调优
DeterminedGithubPyTorchTensorFlow分布式训练开源项目深度学习平台
Determined平台兼容PyTorch和TensorFlow,提供分布式训练、超参数调优和资源管理,降低云端GPU成本并支持实验追踪分析和可复现性。通过Python库、命令行界面和Web用户界面,用户能够轻松构建和管理模型,支持本地和云端部署,包括AWS和GCP。丰富的文档和示例帮助快速上手,通过用户指南、社区支持和贡献者指南,确保完整平台功能的利用。
sentiment_analysis_model - BERT模型的情感分析应用
BERTGithubHuggingface开源项目情感分析无监督学习模型模型描述预训练
该情感分析模型基于BERT,在大规模英语语料的自监督训练基础上,具备双向语句理解能力,经过精细调优,专注于文本分类任务,该项目微调BERT模型以进行情感分析,可用于自动提取文本中的情感特征。
Megatron-LM - 优化GPU训练技术 加速大规模Transformer模型
GPU优化GithubMegatron-CoreMegatron-LM分布式训练大语言模型开源项目
Megatron-LM框架利用GPU优化技术实现Transformer模型的大规模训练。其Megatron-Core组件提供模块化API和系统优化,支持自定义模型训练。该项目可进行BERT、GPT、T5等模型预训练,支持数千GPU分布式训练百亿参数级模型,并提供数据预处理、模型评估和下游任务功能。
autodistill - 使用大型、较慢的基础模型来训练小型、较快的监督模型,通过自动标注实现模型训练全程无需人工干预,支持对象检测和实例分割任务
AutodistillGithubRoboflowinstance segmentationmachine learningobject detection开源项目
Autodistill利用大型基础模型训练小型快速监督模型,通过自动标注实现模型训练全程无需人工干预,支持对象检测和实例分割任务,并计划扩展至语言模型。可在本地硬件或云端运行,通过插件接口连接基础和目标模型插件,减少依赖和许可证冲突,确保高效便捷的模型训练与部署。
RectifiedFlow - 直线路径优化的快速数据生成与传输技术
GithubRectified Flow图像生成开源项目机器学习深度学习生成模型
RectifiedFlow是一种新型机器学习方法,通过连接样本间的直线路径并学习ODE模型,建立分布间的传输映射。该方法反复优化ODE轨迹,实现高效的一步生成,在保持多样性的同时提高了FID指标。RectifiedFlow在生成建模和无监督域转移方面具有广泛应用前景,为图像生成和数据处理领域提供了新的解决方案。
mtt-distillation - 合成数据集优化训练性能,广泛适用于多个领域
CIFAR-100CVPR 2022Dataset DistillationGithubImageNetSynthetic Data开源项目
通过匹配训练轨迹实现数据集蒸馏,减少模型训练所需的真实数据集数量并保持高性能。适用于ImageNet等大规模数据集,可生成低支撑的合成数据集和可拼接纹理。项目提供详细的实现步骤和代码,从下载仓库、生成专家轨迹到数据集蒸馏,帮助用户快速开始应用。还提供可视化工具和超参数设置指南,满足不同需求。此方法显著提高了模型训练效率,适合学术研究和工业应用。
Megatron-DeepSpeed - 分布式训练框架助力大规模语言模型预训练
DeepSpeed配置GPT预训练GithubMegatron-DeepSpeed分布式训练开源项目预处理数据
Megatron-DeepSpeed是一个集成DeepSpeed的大规模语言模型预训练框架。它支持多GPU和多节点分布式训练,提供数据预处理、预训练、微调和下游任务评估等完整流程。该框架针对BERT、GPT等模型优化,实现高效大规模训练。集成DeepSpeed的流水线并行和ZeRO-DP技术,进一步提升训练效率和灵活性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号