Project Icon

iTransformer

用于多变量时间序列预测的iTransformer模型

iTransformer是一种用于多变量时间序列预测的开源模型,无需修改任何Transformer模块。它在处理大规模数据时表现出色,具备显著的性能提升和强大的泛化能力。iTransformer已在多种基准测试中表现优异,支持静态协变量和概率发射头。用户可通过pip安装,并使用项目提供的详细训练和评估脚本。更多信息请参阅官方论文。

nixtla - 精准的时间序列预测和异常检测,适用于多领域的生成式预训练模型
GithubTimeGPT开源项目异常检测时间序列零样本推理预测
TimeGPT是一款生成式预训练模型,专注于时间序列分析,支持零样本推断。该模型可应用于零售、电力、金融、物联网等多个领域,通过简洁的代码实现精准的预测与异常检测。TimeGPT提供灵活的API访问,兼容多种编程语言和平台。基于大规模数据集的训练,它在多种频率下的预测表现卓越,特别适合需要快速、精确时间序列分析的应用。
LTSF-Linear - 线性模型在时间序列预测中的应用
AAAI 2023DLinearGithubLTSF-LinearTransformers开源项目时间序列预测
LTSF-Linear是一个高效的线性模型家族,包括Linear、NLinear和DLinear,专为时间序列预测设计。该模型支持单变量和多变量长时间预测,具有高效率、可解释性和易用性,显著优于Transformer模型。
other - 高性能开源自然语言处理框架
GithubHuggingfacetransformers人工智能开源项目机器学习模型深度学习自然语言处理
Transformers是一个开源的自然语言处理框架,提供多种预训练模型和工具。支持文本分类、问答和生成等任务,适用于研究和生产环境。该框架易用且灵活,可处理多语言文本,支持迁移学习。Transformers定期更新,紧跟NLP领域最新进展,为用户提供丰富的API和优化的性能。
granite-timeseries-ttm-r2 - IBM开源轻量级模型TTM引领时间序列预测新方向
GithubHuggingfaceTinyTimeMixers多变量预测开源项目时间序列预测模型零样本学习预训练模型
IBM Research开源的TinyTimeMixers (TTM)模型仅需1M参数,就能在多变量时间序列预测中超越数十亿参数的基准。TTM支持零样本预测,也可用少量数据微调达到竞争性能。适用于分钟至小时级别的点预测,轻量快速,单GPU或笔记本即可运行。TTM为时间序列预测带来新方向,尤其适合资源受限环境。
TransformerHub - 实现与参考多种Transformer模型
BERTGPTGithubTransformerTransformerHubViT开源项目
此项目实现了多种Transformer架构,包括seq2seq、仅编码器、仅解码器和统一模型,旨在提高编程技能并提供深度学习参考。特色包括多种Attention模块、位置嵌入和采样方法,当前进展是实现DINO模型。项目受到多个开源项目的启发和支持。
lite-transformer - 现代高效的长短期注意力Transformer模型
GithubLite Transformer分布式训练开源项目数据预处理模型训练测试模型
Lite Transformer是一种结合长短期注意力机制的高效Transformer模型。它基于PyTorch开发,支持多种数据集的下载和预处理,能够在NVIDIA GPU上高效运行。模型在多个大型数据集上表现优异,并支持分布式训练和预训练模型下载。
timesfm - 谷歌研究院开发的时间序列预测基础模型
GithubTimesFM基础模型开源项目时间序列预测深度学习
TimesFM是谷歌研究院开发的时间序列预测基础模型,支持多种时间频率的单变量预测。模型可处理最长512个时间点的上下文和任意长度的预测范围,提供简单的API接口支持数组和pandas输入。通过外部回归器库,TimesFM能处理静态和动态协变量。此外,该模型支持微调功能,允许用户在自有数据上优化性能。
AutoTS - 自动化时间序列预测工具
AutoTSGithubPython包开源项目数据分析时间序列预测自动机器学习
AutoTS是一个Python时间序列预测工具,专注于快速部署高精度预测模型。该工具在2023年M6预测竞赛中表现出色,支持多种预测模型和数据转换方法。AutoTS能够处理多变量输出和概率预测,通过自动机器学习寻找最佳模型组合。它适用于大规模数据集,提供横向和马赛克风格的集成方法,以及丰富的指标、交叉验证和数据处理功能。
q-transformer - 自回归Q函数实现离线强化学习
AI模型GithubQ-Transformer开源项目强化学习机器人控制神经网络
Q-transformer项目是Google Deepmind提出的可扩展离线强化学习方法的开源实现。该项目通过自回归Q函数优化多动作选择,支持单一和多动作学习,并提供深度对偶架构和n步Q学习。它包含环境交互、数据集创建和学习流程,适用于复杂机器人控制任务。Q-transformer的创新性和灵活性为强化学习研究和应用提供了重要工具。
Time-series-prediction - 多功能的TensorFlow时间序列预测平台
GithubTFTSTensorFlow开源项目时间序列深度学习预测
TFTS(TensorFlow Time Series)是一个易用的时间序列预测工具包,支持TensorFlow和Keras中的经典及前沿深度学习方法。适用于预测、分类及异常检测任务。提供适应工业、研究和竞赛所需的深度学习模型,配有详尽文档和教程,帮助用户快速入门。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号