Project Icon

dla102.in1k

深层聚合架构的图像分类模型 支持多种计算机视觉应用

dla102.in1k是基于深层聚合架构的图像分类模型,在ImageNet-1k数据集上训练。模型拥有3330万参数,支持224x224像素输入。除图像分类外,还可用于特征图提取和图像嵌入。通过timm库可方便地调用此预训练模型,为计算机视觉应用提供灵活基础。模型在图像分类、特征提取等任务中表现出色,适用于多种视觉分析场景。

imagen-pytorch - 文本到图像合成技术,基于Pytorch的Imagen实现
GithubImagenPytorchT5模型开源项目文本到图像神经网络
Google的Imagen是一种基于Pytorch实现的文本到图像神经网络,被视为此领域的新技术标杆。它采用简化的架构和优化的设计,例如级联DDPM、动态剪辑和内存高效的Unet设计。该项目在从文本转换成图像的合成过程中,表现出了相比DALL-E2的显著优势,为研究人员和开发者提供了实用的图像生成工具。
awesome-huge-models - 大型AI模型最新动态与开源资源汇总
AI训练GithubLLMdeep learning模型大模型开源开源项目
详尽介绍大型AI语言模型最新进展及开源资源,包括训练代码、数据集和预训练权重。收录Baichuan、Falcon、OpenLLaMA等模型,并关注开源与分布式训练框架如PyTorch和XLA生态。提供全面资源链接,帮助研究人员和开发者了解当前AI模型的最前沿动态。
InstructCV - 自然语言指令引导的多任务计算机视觉模型
GithubInstructCV开源项目文本到图像生成深度学习生成扩散模型计算机视觉
InstructCV 项目通过指令调优的文本到图像扩散模型,简化了计算机视觉任务的执行方式。该项目将多个计算机视觉任务转化为文本描述的图像生成问题,并使用涵盖分割、物体检测、深度估计和分类等任务的数据集进行训练。利用大型语言模型生成任务提示,该模型从生成模型转变为指令引导的多任务视觉学习者。项目实现了多种环境配置,包括在Huggingface Spaces的Gradio演示和Google Colab的运行示例,并支持PyTorch 1.5+。
DenseNet - DenseNet高效内存卷积网络
CIFAR-10CVPR 2017DenseNetGithubImageNet开源项目模型
DenseNet通过每层与其他层的直接连接,提升图像识别准确性并减少参数和计算量。最新版本内存效率更高,支持CIFAR和ImageNet数据集,提供PyTorch、TensorFlow、Keras等深度学习框架的实现代码,适合研究和应用。
AttentionDeepMIL - 深度多实例学习的注意力机制算法实现
GithubMNISTPyTorch多实例学习开源项目注意力机制深度学习
AttentionDeepMIL是一个开源的深度多实例学习算法项目,基于PyTorch框架实现。它在LeNet-5模型基础上创新性地添加了注意力机制的MIL池化层,适用于图像分类等多实例学习任务。该项目提供完整的实验环境,包括MNIST-BAGS数据集处理、模型架构和训练脚本,支持CPU和GPU运行。此外,AttentionDeepMIL还展示了在医学图像分析领域的应用潜力,包括对乳腺癌和结肠癌组织病理学数据集的实验支持。
GLEE - 实现多任务图像和视频处理的通用视觉基础模型
GLEEGithub多任务模型实例分割开源项目目标检测计算机视觉
GLEE是一个通用对象基础模型,在超过1000万张来自多个数据集的图像上进行联合训练。该模型能同时处理多种以对象为中心的视觉任务,并在多个基准测试中保持领先性能。GLEE具有出色的通用性和零样本迁移能力,可作为增强其他架构或模型的基础组件。这项研究被CVPR2024接受为亮点论文,研究团队计划开源相关代码和预训练模型。
tensorflow-image-models - 将PyTorch图像模型移植到TensorFlow的预训练模型库
GithubTensorFlow图像模型开源项目机器学习深度学习预训练权重
tensorflow-image-models是一个将PyTorch图像模型移植到TensorFlow的开源项目。它提供了多种预训练模型,包括ViT、DeiT、ResNet等,可用于图像分类和分割。该项目为开发者提供了简单的API来创建、预处理和保存/加载模型,并支持调整类别数量以适应不同任务。通过这个模型库,研究人员和开发者可以更方便地在TensorFlow中使用先进的图像模型。
Stylized-ImageNet - 介绍如何在卷积神经网络中创建和使用风格化的ImageNet数据集
CNNGithubImageNetPyTorchStylized-ImageNetTensorFlow开源项目
项目详细介绍了如何创建Stylized-ImageNet,一个经风格化处理的ImageNet版本,用于诱导卷积神经网络(CNN)的形状偏向。Stylized-ImageNet通过改变图像的局部纹理而保持整体形状完整,并有助于提高模型的准确性和鲁棒性。项目提供了使用说明、训练细节和Docker镜像,简化实现过程。用户还可使用提供的代码对任何图像数据集进行风格化处理,提升研究效率。
TinyLlama - 3万亿token训练的小型1.1B参数语言模型
AI预训练GithubTinyLlama开源项目模型评估语言模型
TinyLlama是一个使用3万亿token预训练的1.1B参数语言模型。它与Llama 2架构兼容,可集成到现有Llama项目中。TinyLlama体积小巧,适用于计算和内存受限的场景。该项目开源了预训练和微调代码,具有高效的训练和推理性能。TinyLlama可应用于推测解码、边缘计算和实时对话等领域。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号