Project Icon

ghostnet_100.in1k

GhostNet轻量级图像分类模型实现高效特征提取

ghostnet_100.in1k是基于GhostNet架构的轻量级图像分类模型,在ImageNet-1k数据集上训练。该模型通过创新的特征生成方法,实现了高效的特征提取。模型参数量为5.2M,GMACs仅0.1,适用于224x224像素的图像输入。除图像分类外,还可作为特征提取器应用于其他计算机视觉任务。用户可通过timm库轻松加载和使用该模型。

convnext_tiny.in12k_ft_in1k - ConvNeXt微型模型基于ImageNet-12k预训练和ImageNet-1k微调
ConvNeXtGithubHuggingfaceImageNettimm图像分类开源项目模型预训练模型
ConvNeXt微型图像分类模型在ImageNet-12k数据集上预训练,并在ImageNet-1k上微调。模型采用最新ConvNeXt架构,参数量28.59M,GMACs 4.47,激活量13.44M。224x224输入时Top-1准确率84.186%,384x384输入时达85.118%。适用于图像分类、特征提取和图像嵌入等计算机视觉任务。
edgenext_small.usi_in1k - 轻量级CNN-Transformer混合模型EdgeNeXt用于移动视觉应用
EdgeNeXtGithubHuggingfaceImageNet图像分类开源项目模型特征提取神经网络
edgenext_small.usi_in1k是一款轻量级CNN-Transformer混合模型,针对移动视觉应用优化。该模型在ImageNet-1k数据集上训练,参数量为5.6M,GMACs为1.3。它支持图像分类、特征图提取和图像嵌入等功能,结合CNN和Transformer优势,在保持性能的同时减少计算资源需求,适合在资源受限的移动设备上运行。
resnet101.a1h_in1k - ResNet-B架构图像分类模型 支持多样化特征提取
GithubHuggingfaceResNettimm图像分类开源项目模型深度学习预训练模型
resnet101.a1h_in1k是基于ResNet-B架构的图像分类模型,在ImageNet-1k数据集上训练。模型采用ReLU激活函数、7x7卷积和池化层、1x1卷积短路下采样等结构。支持图像分类、特征图提取和图像嵌入功能,参数量44.5M,224x224输入下GMAC为7.8。在ImageNet验证集上Top-1准确率82.8%,Top-5准确率96.32%。
gmlp_s16_224.ra3_in1k - gMLP架构的ImageNet-1k图像分类模型
GithubHuggingfaceImageNetgMLPtimm图像分类开源项目模型深度学习模型
gmlp_s16_224.ra3_in1k是一个基于gMLP架构的图像分类模型,在ImageNet-1k数据集上训练。该模型在timm库中实现,参数量为1940万,计算量为4.4 GMACs,适用于224x224像素的图像输入。模型可用于图像分类和特征提取,支持top-5预测和图像嵌入生成。这一模型源自'Pay Attention to MLPs'研究,为计算机视觉领域提供了一种高效的MLP架构方案。
convmixer_768_32.in1k - ConvMixer架构的高效图像分类与特征提取模型
GithubHuggingfacetimm卷积神经网络图像分类开源项目模型深度学习特征提取
convmixer_768_32.in1k是基于ConvMixer架构的图像分类模型,在ImageNet-1k数据集上训练完成。该模型拥有2110万参数,支持224x224像素的图像输入。除图像分类外,它还可用于生成图像嵌入。通过timm库,开发者能方便地加载预训练模型进行推理。这一设计简洁高效,为计算机视觉应用提供了实用的解决方案。
pnasnet5large.tf_in1k - PNASNet大规模图像分类与特征提取模型
GithubHuggingfaceImageNet-1kPNasNet图像分类开源项目模型深度学习特征提取
pnasnet5large.tf_in1k是基于Progressive Neural Architecture Search技术开发的图像分类模型,在ImageNet-1k数据集上训练而成。该模型拥有8610万参数,计算量为25.0 GMACs,支持331x331像素的图像输入。它不仅可用于图像分类,还能进行特征图提取和图像嵌入。研究人员和开发者可通过timm库轻松调用此预训练模型,提高图像处理效率。
regnety_002.pycls_in1k - 轻量级RegNetY模型用于图像分类与特征提取
GithubHuggingfaceImageNet-1kRegNetYtimm图像分类开源项目模型深度学习
RegNetY-200MF是一款在ImageNet-1k上预训练的轻量级图像分类模型。它具有3.2M的参数量和0.2 GMACs的计算量,适用于资源受限场景。该模型不仅可进行图像分类,还可作为特征提取的主干网络。timm实现添加了随机深度、梯度检查点等增强功能,提升了模型性能和灵活性。RegNetY-200MF可用于图像分类、特征图提取和图像嵌入等多种任务。
visformer_small.in1k - 视觉友好型Transformer图像分类模型
GithubHuggingfaceImageNet-1kVisformertimm图像分类开源项目模型深度学习模型
visformer_small.in1k是基于Visformer架构的图像分类模型,在ImageNet-1k数据集上训练。该模型采用视觉友好的Transformer设计,平衡了高效性和分类性能。它具有4020万参数,处理224x224尺寸图像,可用于分类任务和特征提取。研究者可通过timm库轻松使用此预训练模型进行图像分析和嵌入生成。
convnext_small.in12k_ft_in1k_384 - 高效的ConvNeXt图像分类与特征提取预训练模型介绍
ConvNeXtGithubHuggingfaceImageNettimm图像分类开源项目模型预训练
ConvNeXt图像分类模型,通过timm库在ImageNet-12k及ImageNet-1k上进行预训练与微调,提供图像特征提取与分类功能。支持TPU和8xGPU训练方式,适合大规模数据集处理。模型拥有50.2M参数和25.6 GMACs,支持384x384图像输入,并兼具特征图提取与图像嵌入功能,适用于高效图像处理需求。更多性能数据及结果可在timm库查阅。
convnext_tiny.in12k - ConvNeXt架构图像分类模型 适用于多种视觉任务
ConvNeXtGithubHuggingfaceImageNet-12ktimm图像分类开源项目模型模型比较
convnext_tiny.in12k是基于ConvNeXt架构的图像分类模型,在ImageNet-12k数据集上训练。该模型支持图像分类、特征图提取和图像嵌入等应用,参数量36.9M,GMACs 4.5,224x224分辨率下Top1精度84.186%。性能与效率均衡,适用于多种计算机视觉任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号