Project Icon

repvgg_a2.rvgg_in1k

RepVGG架构的轻量级图像分类模型支持多种视觉应用

repvgg_a2.rvgg_in1k是基于RepVGG架构的图像分类模型,通过ImageNet-1k数据集训练。该模型利用timm库的BYOBNet实现,允许自定义网络结构。模型参数量为28.2M,GMACs为5.7,处理224x224像素的输入图像。除图像分类外,还支持特征图提取和图像嵌入,可应用于多种计算机视觉任务。

tf_efficientnetv2_b0.in1k - 轻量高效的图像分类解决方案
EfficientNet-v2GithubHuggingfaceImageNettimm图像分类开源项目模型特征提取
EfficientNetV2-B0是EfficientNet-v2系列中的轻量级模型,由谷歌研究团队开发并在ImageNet-1k数据集上训练。模型参数仅7.1M,GMACs为0.5,在保持较高准确率的同时大幅降低计算复杂度。除图像分类外,还可用于特征提取和生成图像嵌入。该模型适用于资源受限的环境,如移动设备和边缘计算场景,为开发者提供了高效的图像处理解决方案。
regnetz_c16.ra3_in1k - 采用灵活配置的RegNetZ模型实现高效图像分类
BYOBNetGithubHuggingfaceImageNet-1kRegNetZtimm图像分类开源项目模型
RegNetZ模型在ImageNet-1k上训练后,展现出色的图像分类性能。该模型基于timm库实现,通过BYOBNet灵活配置支持,包括block/stage布局、激活层、归一化层及自注意层等自定义选项。提供多种应用,如图像分类、特征提取及嵌入生成,设计适合处理不同组宽及层配置需求,尤其适用于高精度及灵活性任务。
resnet18.fb_swsl_ig1b_ft_in1k - 基于ResNet-B的ReLU激活图像分类模型
GithubHuggingfaceImageNet-1kResNet-Btimm库半弱监督学习图像分类开源项目模型
本项目展示ResNet-B模型,用于图像分类,特征包括ReLU激活、7x7卷积池化和1x1卷积下采样。模型在Instagram-1B数据集上以半监督学习预训练,并在ImageNet-1k数据集上微调,适用于特征提取和图像嵌入。
convnextv2_tiny.fcmae_ft_in22k_in1k_384 - ConvNeXt-V2:精准高效的图像分类模型
ConvNeXt V2GithubHuggingfaceImageNet卷积网络图像分类开源项目模型自动编码器
ConvNeXt-V2 模型具备高效的图像分类能力,通过全卷积掩码自编码器架构进行预训练,并在 ImageNet-22k 和 ImageNet-1k 数据集上进行精调。该模型具备 28.6M 参数量、13.1 GMACs 计算量,支持 384x384 的图像尺寸。通过 timm 库使用,支持图像分类、特征图提取和图像嵌入等多种视觉任务。
hrnet_w18.ms_aug_in1k - HRNet W18图像分类模型 基于ImageNet-1k训练
GithubHRNetHuggingfaceImageNet-1ktimm图像分类开源项目模型特征提取
hrnet_w18.ms_aug_in1k是HRNet团队开发的图像分类模型,在ImageNet-1k数据集上训练。该模型拥有2130万参数,4.3 GMACs计算复杂度,可用于图像分类、特征图提取和图像嵌入。模型提供高分辨率视觉表征,适用于多种计算机视觉任务。通过timm库可方便地加载和使用这一预训练模型。
wide_resnet50_2.racm_in1k - Wide ResNet-50-2模型采用RandAugment训练实现高性能图像分类
GithubHuggingfacewide_resnet50_2图像分类开源项目模型特征提取神经网络预训练模型
wide_resnet50_2.racm_in1k是一个基于Wide-ResNet-B架构的图像分类模型。它采用ReLU激活函数、7x7卷积层和1x1卷积短路连接。该模型在ImageNet-1k数据集上通过RandAugment 'RACM'方法训练,达到82.27%的top-1准确率。模型包含6890万参数,可用于图像分类、特征提取和嵌入生成。基于timm库实现,提供简洁API便于推理和特征提取。
gmixer_24_224.ra3_in1k - MLP-Mixer变体:采用SwiGLU的图像分类和特征提取模型
GithubHuggingfaceImageNet-1ktimm图像分类开源项目机器学习模型模型神经网络
gmixer_24_224.ra3_in1k是一个基于MLP-Mixer架构的图像分类模型,在timm库中由Ross Wightman开发。该模型采用SwiGLU激活函数,在ImageNet-1k数据集上训练,拥有2470万参数,计算复杂度为5.3 GMACs。它支持224x224尺寸的图像输入,可用于图像分类和特征提取。模型提供简洁的API,便于进行图像分类和嵌入提取,适用于多种计算机视觉应用场景。
tf_efficientnetv2_s.in21k_ft_in1k - EfficientNet-v2图像分类模型 基于双重ImageNet数据集训练
EfficientNet-v2GithubHuggingfaceImageNettimm图像分类开源项目模型特征提取
这是一个基于EfficientNet-v2架构的图像分类模型,采用ImageNet-21k预训练和ImageNet-1k微调策略。模型参数量为2150万,计算量为5.4 GMACs,支持图像分类、特征提取和图像嵌入等多种应用。训练采用300x300分辨率,测试时提升至384x384,在性能和效率之间实现良好平衡。该模型最初由论文作者在Tensorflow中实现,后由Ross Wightman移植至PyTorch框架。
mobilenetv4_conv_small.e2400_r224_in1k - MobileNet-V4图像分类模型简介
GithubHuggingfaceImageNetMobileNetV4PyTorchtimm图像分类开源项目模型
MobileNetV4是一个利用ImageNet-1k数据集训练的图像分类模型,具有3.8M参数和0.2 GMACs的复杂度。该模型由timm库优化,使用了与MobileNet-V4论文一致的超参数。其训练和测试图像尺寸分别为224x224和256x256,适用于移动平台。更多信息可在PyTorch Image Models和相关论文中找到。
fbnetc_100.rmsp_in1k - FBNetC-100:轻量级移动设备图像分类模型
FBNetGithubHuggingfaceImageNet-1ktimm图像分类开源项目模型神经网络架构搜索
fbnetc_100.rmsp_in1k是基于FBNet架构的轻量级图像分类模型,在ImageNet-1k数据集上训练。该模型仅有5.6M参数和0.4 GMACs,适用于224x224图像输入,专为移动设备优化。通过timm库,可轻松实现图像分类、特征图提取和图像嵌入等功能。模型采用RMSProp优化器和指数衰减学习率,平衡了性能和效率。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号