Project Icon

repvgg_a2.rvgg_in1k

RepVGG架构的轻量级图像分类模型支持多种视觉应用

repvgg_a2.rvgg_in1k是基于RepVGG架构的图像分类模型,通过ImageNet-1k数据集训练。该模型利用timm库的BYOBNet实现,允许自定义网络结构。模型参数量为28.2M,GMACs为5.7,处理224x224像素的输入图像。除图像分类外,还支持特征图提取和图像嵌入,可应用于多种计算机视觉任务。

resmlp_12_224.fb_in1k - ResMLP架构的数据高效图像分类模型
GithubHuggingfaceImageNetResMLP图像分类开源项目模型深度学习神经网络
resmlp_12_224.fb_in1k是Facebook Research团队基于ResMLP架构开发的图像分类模型,在ImageNet-1k数据集上训练。该模型采用前馈网络结构,拥有1540万参数,支持224x224像素图像处理。除图像分类外,还可作为特征提取骨干网络使用。通过timm库,研究者可方便地加载预训练模型进行图像分类或特征提取。该模型展现了数据高效训练在视觉任务中的潜力,为计算机视觉领域提供了新的解决方案。
wide_resnet101_2.tv_in1k - 宽残差网络101_2图像分类与特征提取功能
GithubHuggingfaceImageNet-1kReLU激活wide_resnet101_2.tv_in1k图像分类开源项目模型特征提取
Wide-ResNet101_2.tv_in1k是一种经ImageNet-1k数据训练的图像分类模型,采用ReLU激活、7x7卷积以及1x1卷积捷径降采样。该模型在图像分类和特征图提取方面表现优秀,可通过timm库轻松集成,是图像处理和计算机视觉领域的实用工具。
mobilenetv3_large_100.ra_in1k - MobileNet-v3 轻量级高效图像分类模型
GithubHuggingfaceImageNet-1kMobileNet-v3timm图像分类开源项目模型特征提取
MobileNet-v3是一款针对移动设备优化的图像分类模型。它在ImageNet-1k数据集上训练,采用RandAugment增强技术和RMSProp优化器。模型参数仅5.5M,计算量0.2 GMACs,支持224x224像素输入。除图像分类外,还可用于特征提取和生成图像嵌入,是资源受限环境下的理想选择。
nfnet_l0.ra2_in1k - 轻量级NFNet模型:无需规范化层的高效图像识别
GithubHuggingfaceImageNet-1kNFNettimm图像分类开源项目模型特征提取
nfnet_l0.ra2_in1k是一种创新的轻量级NFNet图像分类模型,摒弃了传统的规范化层。它通过Scaled Weight Standardization和策略性放置的标量增益,实现了高效的大规模图像识别。基于ImageNet-1k数据集训练,该模型拥有3510万参数,适用于图像分类、特征提取和嵌入任务。这种无需常规规范化层的设计,为高性能图像处理提供了新的可能。
efficientnetv2_rw_t.ra2_in1k - EfficientNet-v2的模型特点与应用分析
EfficientNet-v2GithubHuggingfaceImageNet-1ktimm图像分类开源项目模型特征提取
EfficientNet-v2是一个专注于图像分类的高效模型,采用RandAugment策略在ImageNet-1k数据集上训练,具有参数少、训练快的特点。通过timm库实现,支持特征图提取和图像嵌入等多种功能。其结构设计为强大的特征骨干提供了基础。
convnext_tiny.in12k - ConvNeXt架构图像分类模型 适用于多种视觉任务
ConvNeXtGithubHuggingfaceImageNet-12ktimm图像分类开源项目模型模型比较
convnext_tiny.in12k是基于ConvNeXt架构的图像分类模型,在ImageNet-12k数据集上训练。该模型支持图像分类、特征图提取和图像嵌入等应用,参数量36.9M,GMACs 4.5,224x224分辨率下Top1精度84.186%。性能与效率均衡,适用于多种计算机视觉任务。
convnext_nano.in12k_ft_in1k - 基于ConvNeXt架构的轻量级图像分类模型
ConvNeXtGithubHuggingfaceImageNettimm图像分类开源项目模型特征提取
convnext_nano.in12k_ft_in1k是基于ConvNeXt架构开发的轻量级图像分类模型,模型参数量1560万,在ImageNet-12k数据集预训练后在ImageNet-1k微调。支持图像分类、特征提取和嵌入向量生成等功能,适用于计算资源受限环境下的视觉任务。
vit_tiny_patch16_384.augreg_in21k_ft_in1k - ViT-Tiny 轻量级视觉转换器模型实现图像分类与特征提取
GithubHuggingfaceImageNetVision Transformertimm图像分类开源项目模型深度学习
ViT-Tiny是一款轻量级视觉转换器模型,专为图像分类和特征提取而设计。该模型在ImageNet-21k上预训练,并在ImageNet-1k上微调,采用了先进的数据增强和正则化技术。模型仅有5.8M参数,能处理384x384尺寸的图像,通过timm库可轻松加载用于推理或进一步微调。ViT-Tiny在保持高性能的同时,大幅降低了计算资源需求,适合各类图像识别应用场景。
tf_mixnet_l.in1k - MixNet架构的轻量级图像分类模型
GithubHuggingfaceImageNetMixNetPyTorchtimm图像分类开源项目模型
tf_mixnet_l.in1k是一个基于MixNet架构的图像分类模型,在ImageNet-1k数据集上训练。该模型采用混合深度卷积核,参数量为7.3M,计算量为0.6 GMACs。它支持图像分类、特征图提取和图像嵌入等功能,适用于224x224像素的输入图像。tf_mixnet_l.in1k在保持较小模型规模的同时,为多种计算机视觉任务提供了有效的解决方案。
vit_base_patch8_224.augreg2_in21k_ft_in1k - 基于Vision Transformer的ImageNet预训练图像分类模型
GithubHuggingfaceImageNetVision Transformertimm图像分类开源项目模型神经网络
vit_base_patch8_224.augreg2_in21k_ft_in1k是一个基于Vision Transformer架构的图像分类模型。该模型在ImageNet-21k上预训练,并在ImageNet-1k上微调,采用了增强的数据增强和正则化技术。模型包含8665万个参数,支持224x224像素的输入图像,可用于图像分类和特征提取。通过timm库,用户可以便捷地加载和使用该模型进行推理或继续训练。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号