Project Icon

sebotnet33ts_256.a1h_in1k

结合ResNet与自注意力的高性能图像分类模型

sebotnet33ts_256.a1h_in1k是一个融合ResNet架构和BotNet设计的图像分类模型,整合了Squeeze-and-Excitation通道注意力机制。该模型在ImageNet-1k数据集上训练,通过timm库实现。它采用LAMB优化器、强化的dropout和随机深度技术,以及余弦学习率调度。模型提供灵活的配置选项,包括块/阶段布局和注意力层等,适用于图像分类和特征提取任务。其平衡了性能和训练效率,为计算机视觉领域提供了实用的解决方案。

DenseNet - DenseNet高效内存卷积网络
CIFAR-10CVPR 2017DenseNetGithubImageNet开源项目模型
DenseNet通过每层与其他层的直接连接,提升图像识别准确性并减少参数和计算量。最新版本内存效率更高,支持CIFAR和ImageNet数据集,提供PyTorch、TensorFlow、Keras等深度学习框架的实现代码,适合研究和应用。
ml-cvnets - 灵活的计算机视觉模型训练库
CVNetsGithub图像分类对象检测开源项目模型训练计算机视觉
CVNets是一个计算机视觉库,支持研究人员和工程师训练和评估多种计算机视觉模型,包括对象分类、对象检测和语义分割等任务。最新版本引入了直接处理文件字节的Transformer和高效在线增强,支持如Mask R-CNN、EfficientNet、Swin Transformer和ViT等模型,并增强了蒸馏功能。
ml-fastvit - 高效混合视觉Transformer模型用于图像分类
FastViTGithub图像分类开源项目模型性能结构重参数化视觉Transformer
FastViT是一种采用结构重参数化技术的混合视觉Transformer模型。该模型在ImageNet-1K数据集上实现了准确率和延迟的良好平衡,提供多个变体以适应不同应用场景。FastViT在iPhone 12 Pro上的基准测试显示出优秀的移动端性能。项目开源了预训练模型、训练评估代码和使用文档。
models - 探索最先进的机器学习模型与技术
GithubONNX Model Zoo图像分类对象检测开源项目机器学习模型语言处理
ONNX Model Zoo是一个开源平台,汇集了各种预训练且处于技术前沿的机器学习模型,涵盖计算机视觉、自然语言处理等多个领域。旨在为开发者、研究人员和技术爱好者提供高效实用的AI工具,加速机器学习技术的应用和发展。此外,ONNX Model Zoo支持多种框架和工具,通过共同的文件格式和操作集,促进了AI开发的灵活性和互操作性。平台以开放性和社区驱动的特性为己任,含有诸如图像分类、对象检测等主要模型,并通过简易接口及高级工具满足不同用户需求,使其既适应初学者也满足专业人士的需求。
Awesome-Backbones - 图像分类的主干网络库及其使用教程
Awesome-BackbonesGithubPyTorch图像分类开源项目模型训练预训练权重
提供丰富的图像分类主干网络,包括TinyViT、DeiT3、EdgeNeXt、RevVisionTransformer等,兼容Pytorch 1.7.1+及Python 3.6+。项目包含环境搭建、数据集准备、训练和评估的详细教程,适合科研和实际应用,提升图像分类模型性能。提供快速开始指南和预训练权重,帮助开发者高效部署与测试。
efficientvit - EfficientViT多尺度线性注意力用于高分辨率密集预测
EfficientViTGithub图像分割开源项目模型优化深度学习计算机视觉
EfficientViT是一种新型ViT模型,专注于高效处理高分辨率密集预测视觉任务。其核心是轻量级多尺度线性注意力模块,通过硬件友好操作实现全局感受野和多尺度学习。该项目提供图像分类、语义分割和SAM等应用的预训练模型,在性能和效率间达到平衡,适合GPU部署和TensorRT优化。
AttentionDeepMIL - 深度多实例学习的注意力机制算法实现
GithubMNISTPyTorch多实例学习开源项目注意力机制深度学习
AttentionDeepMIL是一个开源的深度多实例学习算法项目,基于PyTorch框架实现。它在LeNet-5模型基础上创新性地添加了注意力机制的MIL池化层,适用于图像分类等多实例学习任务。该项目提供完整的实验环境,包括MNIST-BAGS数据集处理、模型架构和训练脚本,支持CPU和GPU运行。此外,AttentionDeepMIL还展示了在医学图像分析领域的应用潜力,包括对乳腺癌和结肠癌组织病理学数据集的实验支持。
SparK - 卷积神经网络的BERT风格自监督预训练新方法
BERT-style预训练CNNGithubICLR 2023SparK卷积神经网络开源项目
该项目实现了BERT风格的自监督预训练方法在卷积神经网络中的应用,能够对如ResNet等任意CNN进行预训练。项目代码简洁易读,只需最少的依赖项。在ImageNet数据集上表现优异,展示了小模型在预训练后能够超越大模型的能力,同时生成性自监督学习优于对比学习。
MagNet - 多尺度语义分割框架提升图像精度
GithubMagNet卷积神经网络多尺度框架开源项目语义分割高分辨率数据集
MagNet是一种多尺度语义分割框架,采用多阶段处理方法解决高分辨率图像中的局部歧义问题。每个处理阶段对应一个放大级别,实现从粗到细的信息传播。在城市景观、航拍场景和医学图像等高分辨率数据集上的实验显示,MagNet的性能显著超越现有方法,为高分辨率图像的精确语义分割提供了新的技术方案。
Efficient-AI-Backbones - 领先的人工智能模型与技术 - Huawei Noah's Ark Lab 研发
AI模型GithubNeurIPSTransformer华为开源项目机器学习热门
Efficient-AI-Backbones 项目涵盖了由华为诺亚方舟实验室研发的一系列先进的人工智能模型,包括 GhostNet, TNT, AugViT, WaveMLP, 和 ViG 等。这些模型通过创新的结构设计和优化,有效提升了计算效率和性能,广泛应用于各种智能处理任务。最新发布的 ParameterNet 在 CVPR 2024 会议上被接受,展现了华为在人工智能技术领域的持续领先。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号