Project Icon

tf_efficientnet_b1.ns_jft_in1k

EfficientNet图像分类模型,无监督学习的图像标杆

本项目是一个EfficientNet图像分类模型,通过Noisy Student半监督学习在ImageNet-1k和JFT-300m数据集上使用Tensorflow训练,并移植到PyTorch中。它可以执行图像分类、特征提取和嵌入生成。拥有仅7.8M参数和高计算效率,适合研究深度学习模型的缩放和性能优化。

tf_efficientnet_b1.ns_jft_in1k 项目介绍

背景介绍

tf_efficientnet_b1.ns_jft_in1k 项目是一款高效的图像分类模型。它基于 EfficientNet 架构,由研究人员在 Tensorflow 中使用 Noisy Student 半监督学习方法训练而成,并由 Ross Wightman 移植到 PyTorch。该模型使用的是 ImageNet-1k 和未标记的 JFT-300m 数据集,具有良好的图像分类性能。

模型详情

模型类型

  • 图像分类/特征骨干

模型统计

  • 参数量:7.8百万
  • GMACs:0.7
  • 激活数:10.9百万
  • 图像尺寸:240x240像素

相关论文

训练数据集

  • ImageNet-1k

原始仓库

模型使用方法

图像分类

该模型可以用于图像分类任务,通过简单的几行代码即可实现。加载预训练模型后,可以对输入图像进行处理并获得其分类结果。

from PIL import Image
import timm

# 加载并预处理图像
img = Image.open('图像链接/路径')

model = timm.create_model('tf_efficientnet_b1.ns_jft_in1k', pretrained=True)
model = model.eval()

transforms = timm.data.create_transform(is_training=False)

# 获取分类结果
output = model(transforms(img).unsqueeze(0))

特征图提取

该模型还支持从输入图像中提取特征图,这对需要中间层输出进行分析的任务十分有用。

model = timm.create_model('tf_efficientnet_b1.ns_jft_in1k', pretrained=True, features_only=True)
model = model.eval()

output = model(transforms(img).unsqueeze(0))

每个输出的特征图尺寸与原始图像有所区别,具体形状可以通过循环打印确认。

图像嵌入

若需要获取图像嵌入(即特征向量),可以通过如下方式实现,此过程可视为移除分类器层后的特征提取。

model = timm.create_model('tf_efficientnet_b1.ns_jft_in1k', pretrained=True, num_classes=0)
model = model.eval()

output = model(transforms(img).unsqueeze(0))

模型比较

可前往 timm 模型结果 页面,探索该模型在数据集上的性能及运行度量。

引用信息

若在研究或应用中使用了该模型,请引用以下论文:

@inproceedings{tan2019efficientnet,
  title={Efficientnet: Rethinking model scaling for convolutional neural networks},
  author={Tan, Mingxing and Le, Quoc},
  booktitle={International conference on machine learning},
  pages={6105--6114},
  year={2019},
  organization={PMLR}
}
@article{Xie2019SelfTrainingWN,
  title={Self-Training With Noisy Student Improves ImageNet Classification},
  author={Qizhe Xie and Eduard H. Hovy and Minh-Thang Luong and Quoc V. Le},
  journal={2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2019},
  pages={10684-10695}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

问小白

问小白是一个基于 DeepSeek R1 模型的智能对话平台,专为用户提供高效、贴心的对话体验。实时在线,支持深度思考和联网搜索。免费不限次数,帮用户写作、创作、分析和规划,各种任务随时完成!

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号