Project Icon

vit_large_patch14_clip_224.openai_ft_in12k_in1k

视觉变压器用于图像分类和特征嵌入的高级应用

OpenAI开发的视觉变压器(ViT)模型在WIT-400M图像文本对上通过CLIP进行预训练,并在ImageNet-12k和ImageNet-1k上微调,适用于图像分类与特征嵌入生成。模型运行在timm库中,具有高参数量与计算效率,适用于高精度图像识别,支持实时与批量处理应用。

vision_transformer - 视觉Transformer和MLP-Mixer模型库 高性能图像识别
FlaxGithubJAXMLP-MixerVision Transformer图像识别开源项目
项目包含多种视觉Transformer(ViT)和MLP-Mixer模型实现,提供ImageNet和ImageNet-21k预训练模型及JAX/Flax微调代码。通过交互式Colab笔记本可探索5万多个模型检查点。这些高性能图像分类模型代表了计算机视觉的前沿进展。
ml-fastvit - 高效混合视觉Transformer模型用于图像分类
FastViTGithub图像分类开源项目模型性能结构重参数化视觉Transformer
FastViT是一种采用结构重参数化技术的混合视觉Transformer模型。该模型在ImageNet-1K数据集上实现了准确率和延迟的良好平衡,提供多个变体以适应不同应用场景。FastViT在iPhone 12 Pro上的基准测试显示出优秀的移动端性能。项目开源了预训练模型、训练评估代码和使用文档。
ViTamin - 推动计算机视觉进入新时代的可扩展视觉语言模型
GithubViTamin图像处理开源项目深度学习视觉语言模型计算机视觉
ViTamin是一系列可扩展的视觉语言模型,在图像分类、开放词汇检测和分割等任务上取得突破。以436M参数量在DataComp-1B数据集训练,实现82.9%的ImageNet零样本准确率。在7个开放词汇分割基准测试中创新纪录,并提升大型多模态模型能力。获timm和OpenCLIP官方支持,提供简单接口。ViTamin为计算机视觉领域带来新的可能性。
mobilevitv2_075.cvnets_in1k - MobileViT-v2:高效的移动视觉变换器图像分类解决方案
GithubHuggingfaceImageNet-1kMobileViT-v2Separable Self-attention图像分类开源项目模型特征提取
MobileViT-v2是一个高效的移动视觉变换器模型,利用分离自注意力机制优化了图像分类与特征提取。经过ImageNet-1k数据集训练,该模型适配多种计算机视觉任务。模型规格包括2.9M参数和1.1 GMAC,支持256x256图像输入。借助timm库,模型可轻松集成至移动设备的视觉处理应用中。
DFN5B-CLIP-ViT-H-14-378 - 大规模数据筛选优化的视觉语言预训练系统
CLIPGithubHuggingface图像分类开源项目数据过滤网络机器学习模型计算机视觉
DFN5B-CLIP-ViT-H-14-378是一款基于CLIP架构的视觉语言模型,采用数据过滤网络(DFN)技术从43B未筛选的图像-文本对中提取5B高质量数据进行训练。该模型在多项视觉任务中表现优异,平均准确率达70.94%。支持零样本图像分类,可与OpenCLIP框架无缝集成,为计算机视觉和自然语言处理研究提供了高性能的预训练模型基础。
vit-pytorch - 通过PyTorch实现多种视觉Transformer变体
GithubPytorchVision Transformer卷积神经网络图像分类开源项目深度学习
本项目展示了如何在PyTorch中实现和使用视觉Transformer(ViT)模型,包括Simple ViT、NaViT、Distillation、Deep ViT等多种变体。利用基于Transformer架构的简单编码器,本项目在视觉分类任务中达到了先进水平。用户可以通过pip进行安装,并参考提供的代码示例进行模型加载和预测。项目还支持高级功能如知识蒸馏、变分图像尺寸训练和深度模型优化,适用于多种视觉任务场景。
owlvit-base-patch32 - OWL-ViT:基于CLIP的开放词汇目标检测模型
CLIPGithubHuggingfaceOWL-ViT开源项目模型目标检测计算机视觉零样本学习
OWL-ViT是一种基于CLIP的目标检测模型,专注于开放词汇和零样本检测任务。它结合了ViT结构的视觉编码器和因果语言模型的文本编码器,通过端到端训练实现了灵活的文本条件目标检测。该模型支持单一或多个文本查询,能够在未见过的类别上进行定位和分类,为计算机视觉领域的研究提供了新的工具和方向。
rorshark-vit-base - ViT架构图像分类模型实现99.23%精度
GithubHuggingfaceViT准确率图像分类开源项目机器学习模型训练模型
rorshark-vit-base是基于google/vit-base-patch16-224-in21k模型微调的图像分类器。该模型采用Vision Transformer架构,在imagefolder数据集上达到99.23%的分类准确率。经过5轮训练,使用Adam优化器和线性学习率调度。虽然在高精度图像分类任务中表现出色,但其具体应用场景和局限性有待进一步研究。
CLIP-ViT-H-14-laion2B-s32B-b79K - 基于LAION-2B数据集的多功能视觉-语言模型
CLIPGithubHuggingfacezero-shot图像分类开源项目数据集机器学习模型
CLIP-ViT-H-14-laion2B-s32B-b79K是基于LAION-2B数据集训练的视觉-语言模型。该模型在ImageNet-1k上达到78.0%的零样本Top-1准确率,适用于图像分类、图像文本检索等任务。此外,它还支持图像分类微调、线性探测和图像生成指导等下游应用。研究人员可借助该模型探索零样本图像分类技术,并评估其潜在影响。
owlv2-large-patch14-ensemble - Google OWLv2模型实现零样本开放词汇目标检测
CLIPGithubHuggingfaceOWLv2开源项目模型自然语言处理计算机视觉零样本目标检测
OWLv2是Google开发的基于CLIP的零样本目标检测模型。它使用ViT-L/14架构和掩蔽自注意力Transformer分别处理图像和文本输入。通过端到端训练,OWLv2实现了开放词汇的物体分类和定位,可根据多个文本查询执行目标检测。该模型在公开数据集上训练,为计算机视觉研究提供了新的可能性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号