Project Icon

yolos-fashionpedia

时尚领域物品检测的精细化模型

该模型专注于时尚领域的目标检测,识别多种服饰及配饰类别,包括衬衫、外套、帽子、鞋等。采用微调后的YOLOS架构,并使用Fashionpedia数据集训练,为时尚分析提供准确的识别功能。实现细节可在项目源码查看。

yolov8-face - YOLOv8优化的实时人脸检测与关键点定位框架
GithubYOLOv8人脸检测开源项目深度学习目标检测计算机视觉
yolov8-face项目基于YOLOv8架构,专注于人脸检测和关键点定位。该项目提供多个模型版本,涵盖轻量级到高精度的不同需求,适用于各种应用场景。支持Android和OpenCV等多平台部署,具备高精度和实时性能。新增的yolov8-lite系列进一步优化了模型大小和计算效率,使其更适合移动设备和嵌入式系统应用。
yolov9-face-detection - YOLOv9在WIDER Face数据集上的人脸检测实现
GithubWIDER Face数据集YOLOv9人脸检测开源项目深度学习计算机视觉
这个开源项目展示了如何利用YOLOv9模型在WIDER Face数据集上实现高精度人脸检测。项目提供了完整的工作流程,包括安装指南、预训练模型、数据准备、训练和推理方法。同时还包含数据集转换脚本和配置文件,方便研究者和开发者快速上手并应用于实际场景。
StableVITON - 基于潜在扩散模型的虚拟试穿语义对应学习
CVPR2024GithubStableVITON开源项目潜在扩散模型虚拟试衣语义对应
StableVITON是一个基于潜在扩散模型的虚拟试穿项目,专注于学习语义对应以实现高质量的虚拟试穿效果。该项目提供推理和训练代码,以及预训练模型权重,支持配对和非配对虚拟试穿,并可通过重绘选项保留未遮罩区域。StableVITON在VITON-HD数据集上训练,引入ATV损失提升模型性能。这一开源项目为虚拟试穿技术研究提供了有力工具。
IMAGDressing - 虚拟试衣新技术 实现交互式个性化服装生成
GithubIMAGDressing人工智能可定制化图像生成开源项目虚拟试衣
IMAGDressing是一个创新虚拟试衣项目,采用简单架构实现交互式模块化服装生成。该项目支持逼真服装生成和场景编辑,引入了虚拟试衣任务、综合亲和度指标和IGPair数据集。IMAGDressing能灵活整合多种扩展插件,支持快速个性化定制,无需额外训练即可在短时间内完成设置,为虚拟试衣体验提供多样化选择。
YOLO-Patch-Based-Inference - 补丁式推理优化小物体检测和实例分割
GithubYOLO实例分割开源项目深度学习目标检测计算机视觉
这个Python库实现了基于补丁的推理方法,用于改进小物体检测和实例分割。它支持多种Ultralytics模型,包括YOLOv8/v9/v10、FastSAM和RTDETR,可用于对象检测和实例分割任务。库提供了推理结果可视化功能,并通过优化的补丁处理和结果合并提高了小物体检测准确性。项目还包含交互式笔记本和教程,方便用户学习和使用。
yoloair - YOLOAir2024版:综合模型改进教程与源码库
GithubPyTorchUltralyticsProYOLOAirYOLOv5YOLOv8开源项目
YOLOAir2024版发布,提供多模型支持及改进教程,包括YOLOv5、YOLOv7、YOLOv8等。通过统一框架和模块化实现模型多样化应用,如目标检测、实例分割、图像分类等,适用于科研与实际应用。免费提供源代码。
fashion-mnist - 是 Zalando 文章图像的数据集,由 60,000 个样本的训练集和 10,000 个样本的测试集组成
Fashion-MNISTGithubZalando开源项目数据集机器学习神经网络
Fashion-MNIST数据集,由Zalando的服装图片构成,包含60,000个训练样本与10,000个测试样本。此数据集设计为替代传统的MNIST,提供与10类标签关联的28x28灰度图像,为全球AI及数据科学领域的研究者带来全新挑战,促进技术的发展。
yoloair2 - 多模型集成的YOLO目标检测工具库
GithubPyTorchYOLOAir2YOLO系列开源项目模型改进目标检测
YOLOAir2是一个基于PyTorch的YOLO系列算法工具库,集成了YOLOv7、YOLOv5等多种YOLO变体。它统一了模型代码框架和应用方式,支持用户自由组合backbone、neck和head模块,以构建定制化的目标检测网络。除目标检测外,该项目还整合了实例分割、图像分类等相关任务,为计算机视觉研究提供了便利的实验平台。
yolov7 - 实时目标检测算法实现性能新突破
GithubYOLOv7开源项目性能优化深度学习目标检测计算机视觉
YOLOv7是一款高效的实时目标检测算法,在MS COCO数据集上实现了51.4% AP的性能。该项目提供多种模型变体,包括YOLOv7-X和YOLOv7-W6等,适用于不同应用场景。此外,YOLOv7还具备姿态估计和实例分割功能,支持多GPU训练、迁移学习和模型导出,是一个全面的目标检测解决方案。
PaddleDetection - 目标检测套件支持多任务开发部署
GithubPaddleDetectionPaddlePaddle开源项目深度学习目标检测计算机视觉
PaddleDetection是基于PaddlePaddle的目标检测开发套件,支持通用、小目标、旋转框等多种检测任务。它提供PP-YOLOE、PP-PicoDet等高性能模型和丰富的模型组件,注重产业应用,帮助开发者实现从数据准备到模型部署的全流程开发。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号