Project Icon

OnnxStream

适用于低资源设备的模型运行的内存优化的推理库

OnnxStream专为优化内存使用而设计,支持在低资源设备上高效运行大型模型如Stable Diffusion和TinyLlama。在仅有512MB RAM的Raspberry Pi Zero 2上,实现图像生成和语言模型推理,而无需额外交换空间或磁盘写入。通过解耦推理引擎与模型权重组件,OnnxStream显著降低内存消耗,提供轻量且高效的推理解决方案。其静态量化和注意力切片技术增强了多种应用中的适应性和性能。

StreamDiffusion - 高性能实时AI图像生成框架
AI绘图GithubStreamDiffusion图像处理实时生成开源项目深度学习
StreamDiffusion是一个开源的高性能AI图像生成框架,专为实时交互应用设计。它采用流批处理、残差无分类引导等创新技术,大幅提升了扩散模型的生成速度。在RTX 4090显卡上,使用SD-turbo模型可实现每秒106帧的文生图速度,LCM-LoRA与KohakuV2模型组合也能达到每秒38帧。该项目为开发实时AI图像生成应用提供了有力支持。
Phi-3-mini-128k-instruct-onnx-tf - 多平台高性能运行的指令微调大语言模型优化版本
AI模型GithubHuggingfaceONNXONNXRuntimePhi-3开源项目模型模型优化
该项目提供Phi-3-mini-128k-instruct模型的ONNX优化版本,支持多种设备和平台高性能推理。模型适配CPU、GPU和移动设备,提供不同精度版本。经指令微调和安全优化,推理能力出色。项目配备ONNX Runtime Generate API,便于开发集成。与PyTorch相比,ONNX版本性能全面提升,FP16 CUDA版本最高提速5倍,INT4 CUDA版本最高提速9倍。
stable-fast - 优化HuggingFace Diffusers推理性能的轻量级框架
CUDADiffusersGithubPyTorchStable FastTorchScript开源项目
stable-fast是一个优化HuggingFace Diffusers推理性能的轻量级框架,支持NVIDIA GPU。相比TensorRT和AITemplate需要几十分钟的编译时间,stable-fast仅需几秒钟即可完成模型编译。主要特色包括动态形状、低精度计算和多种算子融合。它还兼容ControlNet和LoRA,并支持最新的StableVideoDiffusionPipeline,是加速PyTorch推理的有效工具。
espnet_onnx - 轻量级语音识别和合成库 基于ONNX格式优化
GithubONNXespnet_onnx开源项目模型导出语音合成语音识别
espnet_onnx是一个将ESPnet模型导出为ONNX格式的实用库,支持语音识别和语音合成任务。该库提供简洁的API接口,便于模型导出和推理。通过ONNX Runtime实现高效的CPU和GPU计算,并支持流式语音识别。用户可从预训练或自定义模型中轻松导出,并进行优化和量化以提升性能。无需PyTorch依赖,适合轻量级部署。
nnstreamer - 为Gstreamer提供神经网络模型支持的插件套件
GithubGstreamerNNStreamer开源项目插件流媒体神经网络
NNStreamer 是一个为 Gstreamer 提供神经网络支持的插件套件。它使 Gstreamer 开发者可以轻松集成神经网络模型,而神经网络开发者可以高效地管理神经网络管道及其过滤器。NNStreamer 支持多种神经网络框架,如 TensorFlow 和 Caffe,允许在单一流管道实例中使用多个神经网络模型。它可以应用于智能媒体过滤和转换,并支持多种操作系统和硬件加速插件。NNStreamer 致力于提供优化的边缘 AI 解决方案。更多详情及使用案例,请访问官方网站。
models - 探索最先进的机器学习模型与技术
GithubONNX Model Zoo图像分类对象检测开源项目机器学习模型语言处理
ONNX Model Zoo是一个开源平台,汇集了各种预训练且处于技术前沿的机器学习模型,涵盖计算机视觉、自然语言处理等多个领域。旨在为开发者、研究人员和技术爱好者提供高效实用的AI工具,加速机器学习技术的应用和发展。此外,ONNX Model Zoo支持多种框架和工具,通过共同的文件格式和操作集,促进了AI开发的灵活性和互操作性。平台以开放性和社区驱动的特性为己任,含有诸如图像分类、对象检测等主要模型,并通过简易接口及高级工具满足不同用户需求,使其既适应初学者也满足专业人士的需求。
zephyr-sft-bnb-4bit - 通过Unsloth技术快速优化Mistral等模型的内存使用
GithubHuggingfaceMistralUnsloth开源项目微调性能优化模型节省内存
该项目使用Unsloth技术实现了Mistral、Gemma和Llama等模型的快速微调,显著降低内存使用率。用户可以通过简单的操作获得优化后的模型,支持导出为GGUF、vLLM或上传至Hugging Face。此方法特别适用于内存要求高的模型,并免费提供初学者友好的工具。
SwiftInfer - AI 推理和服务
GithubStreaming-LLMSwiftInferTensorRT-LLM开源项目推理性能长文本模型
SwiftInfer 采用基于 TensorRT 的 Streaming-LLM 技术,提升长文本输入处理的有效性。借助 Attention Sink 技术,避免模型在注意力窗口变动时发生故障,确保在生产环境中的高效运行,非常适合对推理效率和稳定性要求高的大模型应用。
optimum - 提升模型在不同硬件上的训练和运行效率的一系列优化工具
GithubHugging Face OptimumONNX RuntimeOpenVINOTransformer开源项目训练模型
Optimum扩展了Transformers和Diffusers,提供了一系列优化工具,提升模型在不同硬件上的训练和运行效率。支持的硬件平台包括ONNX Runtime、Intel Neural Compressor、OpenVINO、NVIDIA TensorRT-LLM、AMD Instinct GPUs、AWS Trainium & Inferentia、Habana Gaudi处理器和FuriosaAI。Optimum支持多种优化技术,如图优化、动态量化、静态量化和量化感知训练,配有详尽的文档和示例代码,帮助用户导出和运行优化后的模型。
onnx-mlir - 基于LLVM/MLIR的高性能神经网络编译器
GithubLLVMONNXONNX-MLIR人工智能开源项目编译器
ONNX-MLIR是一个开源编译器项目,旨在将ONNX神经网络模型转换为高效的可执行代码。该项目基于LLVM/MLIR技术,实现了ONNX标准,并提供ONNX方言、编译器接口、驱动程序和多语言运行时环境。ONNX-MLIR支持Linux、macOS和Windows等多个平台,并提供Docker镜像以简化开发和部署流程。通过优化ONNX图,ONNX-MLIR能够生成性能卓越的神经网络实现。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号