Project Icon

GAN-Inversion

GAN逆映射技术的最新进展及应用综述

本资源集合汇总了GAN逆映射技术的最新研究成果,包括2D和3D方法、预训练模型、潜在空间编辑及其在图像生成、操纵和理解等领域的应用。作为相关综述论文的补充,该项目追踪并总结了这一快速发展领域的进展,为研究人员和开发者提供全面参考。

Generative_Deep_Learning_2nd_Edition - 生成深度学习的核心技术,包括变分自编码器、生成对抗网络和变压器模型的教程
DockerGenerative Deep LearningGithubTensorboard开源项目深度学习生成对抗网络
探索生成深度学习的核心技术,包括变分自编码器、生成对抗网络和变压器模型。提供详细的Docker和Kaggle教程,帮助用户轻松学习和训练模型。本书涵盖从基础理论到高级应用的完整知识体系,适用于音乐生成、世界模型等领域的实践。
IP-Adapter-Instruct - 多任务图像生成的突破性技术
GithubIP Adapter Instruct图像生成多任务学习开源项目扩散模型条件控制
IP-Adapter-Instruct是一种先进的图像生成技术,融合了自然图像条件和指令提示。这个模型能够高效处理多种任务,包括风格迁移和对象提取,同时保持高质量输出。它克服了传统文本提示在描述图像风格和细节方面的局限性,提供了更精确的图像生成控制。IP-Adapter-Instruct在实际应用中表现出色,为扩散模型的发展提供了新的可能性。
EnlightenGAN - 无监督深度光照增强技术
EnlightenGANGithub图像增强开源项目无配对监督深度学习计算机视觉
EnlightenGAN是一种用于增强低光照图像质量的深度学习方法。该技术采用无监督学习方式,无需配对的低光/正常光照图像进行训练。EnlightenGAN基于生成对抗网络(GAN)架构,能有效提升各种复杂场景下的图像亮度和细节。在多个公开数据集上,EnlightenGAN展现出优秀性能,为计算机视觉和图像处理领域提供了新的解决方案。
joliGEN - 集成GAN、扩散和一致性模型的AI图像生成框架
GANGithubJoliGEN图像处理开源项目扩散模型生成式AI
joliGEN是一个集成框架,用于训练自定义的AI图像转换模型。该框架集成了GAN、扩散和一致性模型,可用于配对和无配对的图像转换任务。joliGEN适用于图像生成控制、增强现实和数据集增强等实际场景。它支持快速稳定的训练过程,并提供REST API服务简化部署。凭借丰富的选项和参数,joliGEN可应用于多种图像生成和处理任务。
Awesome-Controllable-T2I-Diffusion-Models - 可控文本到图像扩散模型研究进展综述
Diffusion ModelsGithub个性化生成主体驱动生成可控生成开源项目文本到图像生成
该项目汇集了文本到图像扩散模型中可控生成的前沿研究。内容涵盖个性化生成、空间控制、高级文本条件生成等多个方向,并总结了多条件生成和通用可控生成方法。项目为研究人员和开发者提供了全面了解可控T2I扩散模型最新进展的资源,有助于促进该领域的发展。
awesome-image-translation - 综合图像到图像转换技术资源库
Github人工智能图像转换开源框架开源项目深度学习计算机视觉
awesome-image-translation是一个精选的图像到图像转换技术资源库。该项目按年份归类了从2018年前至2024年的研究论文和开源框架,如joliGEN等。这个持续更新的知识库为研究人员和开发者提供了全面的图像转换技术资源,并鼓励社区成员贡献新的内容,以保持资源的时效性和完整性。该资源库涵盖了图像到图像转换领域的广泛内容,包括学术论文、开源框架和其他相关资源。通过年份分类,用户可以方便地追踪技术发展历程。项目的开放性质鼓励社区参与,确保了资源的持续更新和多样性,为图像转换技术的研究和应用提供了宝贵的参考。
EigenGAN-Tensorflow - 层级特征分解的生成对抗网络框架
EigenGANGithub人脸生成图像属性编辑开源项目无监督学习生成对抗网络
EigenGAN-Tensorflow是一个基于TensorFlow实现的生成对抗网络框架,采用层级特征分解方法。该项目提供CelebA和Anime数据集的训练测试代码,可生成和操控高质量人脸与动漫图像。通过特征分解实现图像属性的无监督学习和精确控制,支持多GPU训练,并提供预训练模型。此开源项目为GAN研究和开发提供了实用工具。
Awesome-Image-Composition - 图像合成领域资源精选 从论文到工具的全面集合
AIGCGithub人工智能图像合成开源项目深度学习计算机视觉
Awesome-Image-Composition汇集了图像合成领域的核心资源,包括论文、数据集和相关链接。涵盖图像融合、调和、阴影生成和对象放置等多个子领域,该项目为研究人员和开发者提供了全面的参考资料。此外,项目还包含在线演示和实用工具箱,方便用户实践和探索图像合成技术。收录了超过100篇高质量论文和20多个开源工具,是图像合成研究和应用的首选资源库。
awesome-generative-ai-guide - 全面的生成式AI研究与开发资源库
Githubawesome-generative-ai-guide人工智能大语言模型开源项目机器学习生成式AI
该项目汇集了生成式AI领域的最新研究论文、面试资料、免费课程和代码实例。内容包括月度精选论文、面试准备资源、应用型课程材料、85+免费课程列表及开发代码库。通过定期更新,为研究人员和开发者提供全面的学习资源,有助于掌握生成式AI技术。
Make-It-3D - 单图生成高逼真3D模型
3D重建GithubICCV 2023Make-It-3D单张图像开源项目高保真
Make-It-3D项目利用训练良好的2D扩散模型,从单个图像生成高质量3D内容。方法采用两阶段优化流程,先优化神经辐射场整合正视图和新视角的扩散先验,后将粗略模型转化为纹理点云并提升现实感。实验显示,该方法在视觉质量和重建准确性上大幅领先,并支持文本到3D创建和纹理编辑等应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号