Project Icon

sysidentpy

非线性系统识别和时序预测的Python工具库

SysIdentPy是一个开源Python库,专注于NARMAX模型及其变体的系统识别。该库提供先进的模型结构选择和参数估计技术,支持多种基函数,并可与神经网络和机器学习算法集成。它为时间序列分析和动态系统建模提供了灵活易用的框架,适用于构建动态非线性模型。

tslearn - Python时间序列分析机器学习库
GithubPython库tslearn开源项目数据预处理时间序列分析机器学习
tslearn是一个开源的Python库,专注于时间序列分析和机器学习。它提供数据预处理、分类、聚类、回归和多种距离度量方法。支持可变长度时间序列,兼容scikit-learn,包含UCR数据集和数据生成器。tslearn适用于需要进行时间序列分析的数据科学工作,支持超参数调优和管道等功能,为研究和实践提供全面工具支持。
HyperTS - 全面的时间序列分析工具包 支持多任务和多模式分析
GithubHyperTS开源项目异常检测时间序列分析自动机器学习预测
HyperTS是一款全面的时间序列分析工具包,集成了统计模型、深度学习和神经架构搜索。它支持预测、分类、回归和异常检测等多种任务,适用于复杂的时间序列分析场景。该工具包提供多变量和协变量支持,概率区间预测,以及丰富的预处理、评估指标和搜索策略。HyperTS简单易用,为时间序列分析提供了端到端的自动化解决方案。
statsforecast - 快速高效的统计时间序列预测工具
GithubStatsForecast开源项目性能优化时间序列预测统计模型自动模型
StatsForecast是一个专注于统计时间序列预测的Python库。它集成了多种常用模型如ARIMA、ETS等,并通过numba实现高性能计算。该库支持概率预测、外生变量处理和异常检测,可与Spark等大数据框架无缝对接。StatsForecast能高效处理大规模时间序列数据,适用于生产环境和基准测试。
Surprise - 专为推荐系统设计的Python科学计算工具包
GithubPythonSurprise协同过滤开源项目推荐系统机器学习
Surprise是一个专门用于构建和分析基于显式评分数据的推荐系统的Python科学计算工具包。它简化了数据集处理,提供多种预测算法和相似度度量,支持新算法实现,并具备评估和比较算法性能的工具。Surprise适用于学术研究和商业应用,为推荐系统开发提供了全面的解决方案。
Time-Series-Library - 开源深度学习时间序列分析工具库
GithubTSLib开源项目异常检测时间序列深度学习预测
TSLib为深度学习研究者提供了一个专业开源时间序列分析库,涵盖广泛的应用领域,如长短期预测、数据填充、异常检测和分类。本库提供清晰的代码基础,支持时间序列模型的评估与开发,包括最新的模型评估和深度时间序列研究成果。该工具适合科研和开发人员使用,以推动时间序列分析的未来研究与实践。
pyoats - 灵活强大的时间序列异常检测Python库
GithubOATS开源项目异常检测时间序列机器学习
pyoats是一个专注于时间序列异常检测的开源Python库。它整合了多种先进检测算法,支持单变量和多变量时间序列分析,并提供统一的输出接口。该项目不仅集成了PyTorch、TensorFlow等深度学习框架,还包含传统统计方法。pyoats旨在简化异常检测实验流程,为数据科学家和工程师提供了一个功能丰富、使用灵活的工具。
medpy - 医学图像处理的Python库和工具集
GithubMedPyPython库医学图像处理开源软件开源项目数据分析
MedPy是一个开源的医学图像处理Python库,专注于高维图像处理。它提供丰富的功能和脚本集合,支持PyPI和Conda-Forge安装。MedPy具有完善的文档和教程,适用于Python 3及以上版本。该项目在GitHub上维护,为医学图像处理研究和应用提供了有力支持。MedPy支持医学图像的分割、配准、滤波等多种处理任务,广泛应用于放射学、神经影像学等医学领域。
statsmodels - Python统计建模和数据分析工具包
GithubPython包statsmodels开源项目数据分析时间序列分析统计模型
statsmodels是一个全面的Python统计建模库,提供多种统计方法和工具。包括线性回归、广义线性模型、时间序列分析、生存分析等功能。该项目文档完善,社区活跃,持续更新。适用于数据科学家和研究人员进行各类统计分析和建模任务,可处理从基础到高级的数据分析需求。
tsmoothie - Python时间序列平滑和异常检测库
BootstrapGithubtsmoothie平滑处理开源项目异常检测时间序列
tsmoothie是一个Python库,专门用于时间序列平滑和异常检测。它提供多种平滑技术,包括指数平滑、卷积平滑和谱平滑等,能高效处理单个或多个时间序列。该库支持计算置信区间,便于识别异常值,并实现了滑动窗口平滑和时间序列bootstrap功能。tsmoothie适用于各类时间序列分析任务,是数据科学家和分析师的有力工具。
tspiral - 优化时间序列预测的Python工具包
GithubPython包scikit-learntspiral开源项目时间序列预测机器学习
tspiral是一个专注于时间序列预测的Python工具包,提供多种优化技术如递归预测、直接预测、堆叠预测和修正预测。它与scikit-learn兼容,支持全局和多变量时间序列预测,并提供简洁API。tspiral将复杂的时间序列问题转化为表格式监督回归任务,方便用户利用scikit-learn生态系统进行预测分析。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号