Project Icon

Awesome-Deep-Graph-Clustering

最新深度图聚类方法和资源汇总

ADGC项目汇集了最新深度图聚类研究成果,包括重构性、对比性和生成性等多种方法的论文、代码和数据集。此外还收录了重要的综述文献,为研究人员提供了全面的深度图聚类资源和最新进展。

ADGC: Awesome Deep Graph Clustering

ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets). Any other interesting papers and codes are welcome. Any problems, please contact yueliu19990731@163.com. If you find this repository useful to your research or work, it is really appreciated to star this repository. :sparkles: If you use our code or the processed datasets in this repository for your research, please cite 2-3 papers in the citation part here. :heart:

Made with Python GitHub stars GitHub forks visitors


What's Deep Graph Clustering?

Deep graph clustering, which aims to reveal the underlying graph structure and divide the nodes into different groups, has attracted intensive attention in recent years. More details can be found in the survey paper. Link

Important Survey Papers

YearTitleVenuePaperCode
2023An Overview of Advanced Deep Graph Node ClusteringTCSSLink-
2022A Survey of Deep Graph Clustering: Taxonomy, Challenge, and ApplicationarXivLinkLink
2022A Comprehensive Survey on Community Detection with Deep LearningTNNLSLink-
2020A Comprehensive Survey on Graph Neural NetworksTNNLSLink-
2020Deep Learning for Community Detection: Progress, Challenges and OpportunitiesIJCAILink-
2018A survey of clustering with deep learning: From the perspective of network architectureIEEE AccessLink-

Papers

New-architecture Deep Graph Clustering

YearTitleVenuePaperCode
2024Kolmogorov-Arnold Network (KAN) for Graphs--link

Temporal Deep Graph Clustering

YearTitleVenuePaperCode
2024Deep Temporal Graph Clustering (TGC)ICLRLinklink

Deep Graph Clustering with Unknown Cluster Number

YearTitleVenuePaperCode
2024LSEnet: Lorentz Structural Entropy Neural Network for Deep Graph Clustering (LSEnet)ICMLLinkLink
2024Masked AutoEncoder for Graph Clustering without Pre-defined Cluster Number k (GCMA)arXivLink-
2023Reinforcement Graph Clustering with Unknown Cluster Number (RGC)ACM MMLinkLink

Reconstructive Deep Graph Clustering

YearTitleVenuePaperCode
2024Synergistic Deep Graph Clustering Network (SynC)Arxivlinklink
2024Deep Masked Graph Node Clustering (DMGC)TCSSlink-
2024Multi-scale graph clustering network (MGCN)ISlinklink
2024An End-to-End Deep Graph Clustering via Online Mutual LearningTNNLSlink-
2024Contrastive Deep Nonnegative Matrix Factorization for Community Detection (CDNMF)ICASSPlinklink
2023EGRC-Net: Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)TIPLinkLink
2023Beyond The Evidence Lower Bound: Dual Variational Graph Auto-Encoders For Node Clustering (BELBO-VGAE)SDMLinkLink
2023Graph Clustering with Graph Neural Networks (DMoN)JMLRLinkLink
2023Graph Clustering Network with Structure Embedding Enhanced (GC-SEE)PRlinklink
2023Beyond Homophily: Reconstructing Structure for Graph-agnostic Clustering (DGCN)ICMLLinkLink
2023Toward Convex Manifolds: A Geometric Perspective for Deep Graph Clustering of Single-cell RNA-seq Data (scTCM)IJCAILinkLink
2023Exploring the Interaction between Local and Global Latent Configurations for Clustering Single-cell RNA-seq: A Unified Perspective (scTPF)AAAILinkLink
2022Escaping Feature Twist: A Variational Graph Auto-Encoder for Node Clustering (FT-VGAE)IJCAILinkLink
2022Deep Attention-guided Graph Clustering with Dual Self-supervision (DAGC)TCSVTLinkLink
2022Rethinking Graph Auto-Encoder Models for Attributed Graph Clustering (R-GAE)TKDELinkLink
2022Graph embedding clustering: Graph attention auto-encoder with cluster-specificity distribution (GEC-CSD)NNLink-
2022Exploring temporal community structure via network embedding (VGRGMM)TCYBLink-
2022Cluster-Aware Heterogeneous Information Network Embedding (VaCA-HINE)WSDMLink-
2022Efficient Graph Convolution for Joint Node Representation Learning and Clustering (GCC)WSDMLinkLink
2022ZINB-based Graph Embedding Autoencoder for Single-cell RNA-seq Interpretations (scTAG)AAAILinkLink
2022Graph community infomax(GCI)TKDDLink-
2022Deep graph clustering with multi-level subspace fusion (DGCSF)PRLink-
2022Graph Clustering via Variational Graph Embedding (GC-VAE)PRLink-
2022Deep neighbor-aware embedding for node clustering in attributed graphs (DNENC)PRLink-
2022Collaborative Decision-Reinforced Self-Supervision for Attributed Graph Clustering (CDRS)TNNLSLinkLink
2022Embedding Graph Auto-Encoder for Graph Clustering (EGAE)TNNLSLinkLink
2021Self-Supervised Graph Convolutional Network for Multi-View Clustering (SGCMC)TMMLinkLink
2021Adaptive Hypergraph Auto-Encoder for Relational Data Clustering (AHGAE)TKDELink-
2021Attention-driven Graph Clustering Network (AGCN)ACM MMLinkLink
2021Deep Fusion Clustering Network (DFCN)AAAILinkLink
2020Collaborative Graph Convolutional Networks: Unsupervised Learning Meets Semi-Supervised Learning (CGCN)AAAILinkLink
2020Deep multi-graph clustering via attentive cross-graph association (DMGC)WSDMLinkLink
2020Going Deep: Graph Convolutional Ladder-Shape Networks (GCLN)AAAILink-
2020Multi-view attribute graph convolution networks for clustering (MAGCN)IJCAILinkLink
2020One2Multi Graph Autoencoder for Multi-view Graph Clustering (O2MAC)WWWLinkLink
2020Structural Deep Clustering Network (SDCN/SDCN_Q)WWWLinkLink
2020**Dirichlet Graph Variational Autoencoder
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号