Project Icon

AISquare-Instruct-yi-ko-6b-v0.9.30

面向自然语言处理的高效AI驱动文本生成模型

由Inswave Systems开发的AI模型,基于DPO和SFT方法,并在beomi/Yi-Ko-6B模型上进行训练,实现了有效的文本生成。使用A100x4硬件以提高运行效率,并得到了韩国人工智能中心项目的支持,旨在提升自然语言处理应用的性能。在开放的ko-leaderboard排名中表现优异,展示了其出色的性能和应用潜力。

NeuralSynthesis-7B-v0.1 - NeuralSynthesis-7B-v0.1在多个基准数据集上展示出卓越的文本生成性能
GithubHuggingfaceLeaderboardNeuralSynthesis-7B-v0.1开源项目文本生成模型模型合并语言模型
NeuralSynthesis-7B-v0.1展示了强大的文本生成能力,结合多种模型优势并通过LazyMergekit合并。在AI2 Reasoning Challenge、HellaSwag、MMLU等任务中取得优异成绩,其在AI2 Reasoning Challenge上的标准化准确率为73.04%、HellaSwag验证集上为89.18%,在TruthfulQA 0-shot任务中达到78.15%的精确度。详细性能及排名可在Open LLM Leaderboard查看。
COKAL-DPO_test-v2-13b - 采用LLaMA2架构的13B规模自动回归语言模型
COKAL-DPO_test-v2GithubHuggingfacetransformers开源项目模型模型开发训练数据集语言模型
模型由韩国公司Media Group Saramwa Soop与Marker合作开发,基于LLaMA2变压器架构,具备文本生成能力。基础模型为COKAL_pre_DPO_Test_v1-13b,采用DPO及SFT私有数据集训练,适用于多种文本生成任务。该研究项目由韩国科学技术信息通信部和光州广域市资助,旨在推动人工智能产业集群发展。
Llama-3-Instruct-8B-SPPO-Iter3 - 改进文本生成的创新模型及其在多任务中的性能评估
Apache-2.0GithubHuggingfaceLlama-3-Instruct-8B-SPPO-Iter3开源LLM排行榜开源项目文本生成模型自我游戏偏好优化
Llama-3-Instruct-8B-SPPO-Iter3模型采用自我对弈偏好优化技术进行第三次迭代微调,具备强大的文本生成能力。模型通过IFEval、BBH、MATH、GPQA、MuSR等多个数据集进行多任务性能评估,其中IFEval (0-Shot)的严格准确率为68.28。该模型基于meta-llama/Meta-Llama-3-8B-Instruct,使用openbmb/UltraFeedback数据集训练,拥有8B参数,专注于英文文本生成,为语言模型的优化提供了全新视角和实用的性能测试结果。
Qwen2.5-72B-Instruct-GGUF - 新一代多语言模型,提升指令理解与长文本处理
GithubHuggingfaceQwen多语言支持开源项目指令调优模型语言模型长上下文支持
Qwen2.5系列模型通过改进的专家模型,增强编码和数学性能,支持29种语言,提供最长128K的上下文处理与8K tokens的生成能力。其提升的指令跟随与结构化数据生成能力适合多样化系统提示,使聊天机器人更准确。72B模型采用GGUF格式和现代架构技术,提供流畅对话体验。
Qwen2.5-14B-Instruct-GGUF - 提升语言生成能力支持多语言的14B指令微调模型
GithubHuggingfaceQwen2.5多语言支持开源项目指令调整模型语言模型长上下文支持
Qwen2.5-14B-Instruct-GGUF 模型在编码、数学和多语言支持方面表现卓越,能够生成最高达8K tokens的长文本,并支持128K的上下文长度。该模型适用于聊天与角色扮演,优化的指令跟随和结构化输出,覆盖29种语言,多语言能力强劲。为用户提供良好的长文本生成与结构化数据处理体验。
Qwen2.5-Coder-7B-Instruct - 卓越代码生成能力和128K长文本支持
GithubHuggingfaceQwen2.5-Coder人工智能代码生成大型语言模型开源项目模型长文本处理
Qwen2.5-Coder-7B-Instruct是基于Qwen2.5开发的代码专用大语言模型。该模型在代码生成、推理和修复方面表现出色,为代码智能体等实际应用奠定了坚实基础。模型支持处理高达128K tokens的长文本,拥有7.61B参数,采用因果语言模型架构。除了增强编码能力,它还在数学和通用任务中保持了优秀表现。开发者可通过简洁的代码示例快速上手使用此模型进行文本生成。
model - 高效文本生成的突破:快速模型训练与推理
Apache许可证GithubHuggingfaceLLAMAUnsloth开源项目文本生成推理模型模型训练
该模型使用Unsloth和Huggingface的TRL库显著加速了训练过程,实现了高效文本生成。由keivenlombo开发,基于Apache-2.0许可,此模型为大规模语言模型的实施提供了一种便捷且准确的解决方案。
Qwen2.5-7B-Instruct-bnb-4bit - 快速高效的大语言模型微调工具
GithubHuggingfaceQwen2.5transformers大语言模型开源项目模型模型微调自然语言处理
Qwen2.5-7B-Instruct是一款基于Qwen2.5系列的指令微调模型,具有131,072个token的上下文长度和8192个token的生成能力。该模型在指令遵循、长文本生成和结构化数据理解方面表现出色,支持29种以上语言。通过采用YaRN技术,它能高效处理超长文本,为用户提供更快速、更节省内存的大语言模型微调方案。
Phi-3-mini-4k-instruct - 微软3.8B参数高性能自然语言模型
GithubHuggingfacePhi-3-Mini-4K-Instruct人工智能开源项目机器学习模型自然语言处理语言模型
Phi-3-mini-4k-instruct是微软开发的轻量级开源AI模型,仅有3.8B参数。该模型在常识理解、语言处理、数学和编码等多项基准测试中表现优异,在13B以下参数模型中性能领先。它支持4K上下文长度,通过指令微调和偏好优化提升了指令遵循能力和安全性。这款模型适用于资源受限环境,可作为通用AI系统的重要组件。
aiXcoder-7B - 多语言代码生成模型 提高开发效率与代码质量
AI编程GithubaiXcoder-7B代码生成大语言模型开源项目模型训练
aiXcoder-7B是一个支持多种编程语言的代码生成模型。该模型在代码补全、理解和生成方面表现优异,经过1.2万亿唯一标记的训练,采用了针对实际代码生成场景的预训练任务和上下文信息设计。aiXcoder-7B提高了代码补全和生成的效率与准确性,未来还将优化测试用例生成和代码调试等功能,为开发者提供更全面的编程支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号